Эндогенное дыхание – медицина третьего тысячелетия, стр. 11

Феномен протонов (положительно заряженных атомов водорода), вылетающих из митохондрий в пространство клетки, биохимикам известен давно. Однако, ученые не находили адекватного места этим частицам в обменных процессах. По Петраковичу, протоны наряду с электронами являются для клеток важнейшими энергонесущими и энергопередающими частицами.

«Таким образом, речь идет о принципиально новом, никем ранее не представленном взгляде на получение и передачу энергии в живой клетке – речь идет об ионизирующем протонном излучении в живой клетке, как способе передачи энергии биологического окисления, из митохондрии в цитоплазму».

Второе и третье положения раскрывают тайну конвейера жизни, т. е. за счет каких процессов обеспечивается побуждение к активной работе клеток органов и тканей. Этот конвейер включает в себя: дыхание-горение, электронное возбуждение эритроцитов крови, наработку эритроцитами энергетического потенциала в период их движения по кровеносным сосудам, сброс эритроцитами электронного возбуждения клетке-мишени.

В легких осуществляется не переход кислорода в кровь. Здесь углеводороды тканей взаимодействуют с кислородом воздуха в химической реакции, протекающей по механизму горения. При горении, особенно при горении в виде вспышки, мгновенно рождающей огромное количество электронов, происходит электромагнитное возбуждение, энергии которого вполне достаточно для возбуждения свободно-радикального окисления ненасыщенных жирных кислот мембран эритроцитов.

Г. Н. Петракович поставил вопрос о принципиально новой концепции энергопроизводства, энергообмена и клеточного взаимодействия в живых организмах. Его открытие определило важнейшее направление в исследовании живой материи и имеет самые интересные перспективы.

Однако мы не знаем количественные и качественные параметры работы клеток при энергообеспечении организма. При свободнорадикальном окислении высвобождается значительно больше энергии (около 100 ккал/моль), чем при биохимических процессах с использованием АТФ (6-12 ккал/моль). Куда же исчезает энергия? Или почему все же человеку не хватает энергии?

Новая концепция дыхания и клеточного энергообеспечения получила свое понимание и развитие после открытия Эндогенного Дыхания.

Итак, есть внешнее дыхание, которым пользуются все люди, и есть Эндогенное Дыхание, которым начали пользоваться отдельные люди. Чтобы разобраться в каждом дыхании, нужно рассмотреть работу клеток, начиная от альвеол легких, где осуществляется электронная зарядка отработанной крови, до самой дальней клетки – мишени, которая ожидает свою порцию живительной «электронной» энергии. Но, прежде чем отправиться в путешествие, предлагаем ознакомиться с главным действующим лицом процессов энергопроизводства и энергообмена в организме эритроцитом.

Эритроцит – наиважнейшая клетка крови и организма: «Скажи мне, какие у тебя эритроциты, и я скажу тебе, кто ты». Пожалуй, в такой интерпретации больше смысла, чем в известной поговорке. Специалисты на основании информации об эритроцитах могут получить больше сведений, чем с помощью известных диагностических средств и методов.

Эритроциты – одни из самых многочисленных клеток организма. Из общего количества клеток (около 2 х 1014) примерно 2,5 х 1013 приходится на эритроциты. Это неудивительно. Ведь эритроциты должны обеспечить безостановочное инициирование к работе всех клеток органов и тканей. Благодаря эритроцитам осуществляются обмен веществ, вывод из организма углекислого газа, продуктов обмена, а также другие функции.

По форме обычно эритроцит представляет двояковогнутый диск-дискоцит, диаметром 7–8 мкм, наибольшая толщина – 2,4 мкм, минимальная – 1 мкм. Сухое вещество эритроцита содержит около 95 % гемоглобина, и только 5 % приходится на долю других веществ.

Средняя продолжительность жизни эритроцита составляет 120 дней. Клеточная мембрана эритроцита четырехслойная, средние два слоя состоят из липидов, которые содержат белковые включения в виде плавающих глобулярных тел. Наружные слои белковой природы.

Эритроциты обладают достаточной гибкостью и эластичностью, что легко позволяет им проходить через сосуды, имеющие меньший диаметр.

Эритроциты, как и другие клетки, имеют отрицательные поверхностные заряды. Среди других клеток крови (лейкоцитов, тромбоцитов) эритроциты обладают самым большим поверхностным зарядом. Известно, что частицы, имеющие одинаковые заряды, отталкиваются. Поэтому, благодаря эритроцитам, составляющим главную массу форменных элементов крови, обеспечивается практически безвязкостное, подобно шарикам ртути, движение крови по сосудам.

Перед ознакомлением с механизмом энергообмена хочу привлечь внимание к мощности и надежности организменного энергетического конвейера. У человека с массой 70 кг в состоянии покоя каждую минуту совершают круговорот около 3 кг эритроцитов. И этот процесс никогда не останавливается.

Итак, чтобы приблизиться к истине, мы предлагаем всем совершить еще два путешествия: одно при внешнем, другое при Эндогенном Дыхании. Однако, для ясности цели, необходимо определиться в акцентах. Итак, внешнее дыхание ведет к старению и деградации тканей, а Эндогенное Дыхание вызывает противоположные эффекты. Между дыханием и клетками тканей существует одна среда – кровь в лице эритроцитов, которые несут энергию. Нетрудно догадаться, что при внешнем дыхании эритроциты вызывают процессы, приводящие к повреждению и деградации тканей, а при Эндогенном Дыхании эритроциты производят противоположный эффект. Значит, существует два противоположных варианта возбуждения эритроцитов в легких. Вот с этим мы и должны разобраться в путешествиях. Важно усвоить, сколько эритроцитов получают в легких энергетическое возбуждение и каков характер этого возбуждения.

Заранее должны оговориться, что полученные длительными исследованиями новые знания о дыхании приводят к необходимости ввести некоторые коррективы в механизм производства и обмена энергии гипотезы Петраковича. Это учтено в излагаемой далее теории Эндогенного Дыхания.

10. Эритроциты разрушают сосуды

Представления о новой технологии станут предметными, если заглянуть в легочную альвеолу и капилляры, которые сетью покрывают ее наружную поверхность. Именно здесь, согласно традиционным представлениям, осуществляется газообмен между кровью и легкими. Именно здесь, как еще сегодня учат, кровь получает кислород, чтобы принести его жаждущим клеткам тканей. Но Г. Н. Петракович показал, что все не так. И сегодня имеются десятки доказательств его правоты.

На рисунке 2 поз.1 показана полость альвеолы (поперечник около 260 микрон), внутренняя поверхность которой образована альвеолярными клетками – альвеолоцитами. Поверх альвеолоцитов альвеола выстилается тончайшей жировой пленкой – сурфактантом. Имеющий общую с альвеолой стенку легочный капилляр образован активными клетками эндотелиоцитами.

Что же происходит в капилляре при обычном дыхании? В капилляр, в узкую щель между альвеолоцитами внедряется воздушный пузырек в сурфактантной оболочке. Внедрение обеспечивается за счет подсасывающего эффекта левого предсердия. Можно сказать, что такое подсасывание имеет массовый характер. И еще раз можно поразиться гениальности творца. Достаточная плотность в крови эритроцитов и высокая эластичность капилляров обеспечивают плотный контакт сурфактантной пленки пузырька с поверхностью эритроцита и эндотелиоцитами. Поверхность эритроцита имеет огромный по сравнению с эндотелиоцитом отрицательный электронный потенциал. Возникающий между клетками разряд мгновенно сжигает сурфактантную пленку. В качестве окислителя используется кислород, находящийся в воздушном пузырьке. Но энергию электронного разряда также получают и эндотелиоциты и сурфактант, а от него как по проводам и альвеолоциты. Этот фактор имеет важнейшее значение, поскольку в альвеолы поступает венозная (98–99 %), выжатая в энергетическом смысле кровь. Энергию вспышки прежде всего получает эритроцит, но часть ее также получают клеточные структуры на границе горения.