Вечность. В поисках окончательной теории времени, стр. 123

Однако в этом названии кроется намного больше, чем предполагают подобные поверхностные сравнения. Моя книга не только о «вечности»; она также о настоящем. Загадка стрелы времени начинается не с гигантских телескопов или мощных ускорителей частиц; она здесь, на нашей кухне, проявляется каждый раз, когда мы разбиваем яйцо, или вливаем молоко в кофе, или кладем кубик льда в теплую воду, или проливаем вино на ковер, или позволяем ароматам наполнять комнаты, или тасуем новую колоду карт, или превращаем вкусный ужин в биологическую энергию, или переживаем событие, оставляющее долговременные воспоминания, или даем жизнь новому поколению. Все эти банальные явления демонстрируют фундаментальную необратимость, которая и является отличительным признаком стрелы времени.

Цепочка рассуждений, начавшаяся с попытки понять эту стрелу, неотвратимо привела нас к космологии — к вечности. Больцман предоставил элегантное и привлекательное макроскопическое объяснение энтропии в терминах статистической механики. Но это объяснение не способно дать толкование второму началу термодинамики, если только мы не призываем на помощь граничное условие — почему вообще энтропия когда-то была низкой? Энтропия неразбитого яйца намного ниже, чем могла бы быть, но такие яйца, тем не менее, встречаются повсеместно, потому что общая энтропия Вселенной намного меньше, чем могла бы быть. А причина этого — то, что раньше она была еще ниже, и так вплоть до самого зарождения всего того, что мы в состоянии наблюдать. Происходящее здесь, на нашей кухне, тесно связано с происходящим в вечности, при зарождении Вселенной.

Такие личности, как Галилей, Ньютон и Эйнштейн, знамениты тем, что предлагали законы физики, которые до этого не принимались во внимание. Они работали в разное время, но их достижения объединяет общая тема: все они иллюстрируют универсальность Природы. То, что происходит здесь, происходит и в любом другом месте, — или, как сформулировал Ричард Фейнман, «вся Вселенная в бокале вина, нужно лишь внимательно присмотреться». [305] Галилей показал, что небеса беспорядочны и постоянно видоизменяются, точно так же, как условия здесь, на земле. Ньютон догадался, что те же самые законы гравитации, которые отвечают за падающие яблоки, могут объяснить и движение планет. А Эйнштейн понял, что пространство и время — это составные части одного унифицированного пространства—времени и что кривизна пространства—времени лежит в основе движения Солнечной системы и рождения Вселенной.

Точно так же правила, управляющие энтропией и временем, одинаковы как для нашей повседневной жизни, так и для самых далеких уголков Мультиленной. Нам пока неизвестны все ответы, но мы стоим на пороге огромного прогресса в чрезвычайно важных вопросах.

Каков ответ?

На протяжении всей этой книги мы старательно исследовали все, что знаем о работе времени: начав с гладкого детерминистского контекста относительности и пространства—времени, мы продолжили с беспорядочным вероятностным миром статистической механики. Наконец, мы добрались до космологии и увидели, как лучшие теории Вселенной терпят неудачу, сталкиваясь с самым очевидным свойством Вселенной: отличием между энтропией в ранние и поздние годы. Затем, после того как целых четырнадцать глав мы собирали и формулировали проблемы, мы посвятили всего лишь одну главу возможным решениям и также потерпели неудачу в попытках обнаружить бескомпромиссные подтверждения истинности любого из них.

Возможно, вы даже чувствуете некоторое разочарование, но это было сделано намеренно. Понимание невероятно важного и запутанного свойства окружающего мира — это многоступенчатый процесс. Сначала мы не имеем никакого представления о том, что происходит; затем понимаем, как сформулировать проблему, но у нас совсем нет идей относительно возможных вариантов решения; потом мы располагаем несколькими допустимыми ответами, но не знаем, какой из них верен (и верен ли хоть один); и наконец, мы докапываемся до сути. Стрела времени находится между вторым и третьим этапами: мы можем очень четко сформулировать проблему, но у нас есть лишь несколько расплывчатых идей касательно возможного ответа.

В такой ситуации имеет смысл посвятить больше времени тому, чтобы разобраться в проблеме, а не увязать во множестве потенциальных решений. Пройдет сто лет, но почти все, о чем мы говорили в первых трех частях этой книги, так же будет иметь смысл. Теория относительности хорошо обоснована, так же как и квантовая механика, и каркас статистической механики. Мы уверены в своем понимании основ эволюции Вселенной, по крайней мере начиная с момента сразу после Большого взрыва и до сегодняшнего дня. Однако существующие в настоящее время идеи относительно квантовой гравитации, Мультиленной и того, что происходило в период Большого взрыва, все еще остаются на спекулятивном уровне. Какие-то из них могут вырасти в твердое понимание, но многие наверняка будут отброшены и забыты. В данный момент нам гораздо важнее получить общее представление о карте территории, чем ссориться из-за того, по какому маршруту ее лучше пройти.

Наша Вселенная — это не флуктуация на равновесном фоне, ведь в этом случае она бы выглядела совершенно иначе. И кажется маловероятным, что фундаментальные законы физики могут быть необратимыми на микроскопическом уровне, — и даже если могут, все равно очень сложно понять, как это способно объяснить эволюцию энтропии и сложность, которую мы наблюдаем в нашей Вселенной. Невозможно отрицать граничное условие, застрявшее в начале времен, но его постулирование скорее позволяет избегать неудобных вопросов, чем отвечает на них. Возможно, это все, чего нам когда-либо удастся добиться, но я все же подозреваю, что низкая энтропия ранней Вселенной — это ключ к пониманию чего-то более важного, а не просто упрямый факт, с которым только и остается что смириться.

У нас на руках остался один вариант: наша наблюдаемая Вселенная является частью намного более крупной структуры, Мультиленной. Помещая то, что доступно нашему взору, внутрь громадного ансамбля, мы получаем возможность дать разумное объяснение нашему, очевидно, тонко подстроенному началу, не навязывая никакой тонкой подстройки для всей Мультиленной в целом. Одного такого хода, разумеется, недостаточно; нам нужно продемонстрировать, почему в этом мире должен существовать постоянный градиент энтропии и почему этот градиент должен проявляться в форме Вселенной, подобной нашей, а не каким-то другим образом.

Мы обсудили специфическую модель, к которой я питаю особое расположение: Вселенную, большая часть которой представляет собой высокоэнтропийное пространство де Ситтера, но которая порождает автономные новорожденные Вселенные, не только позволяя энтропии увеличиваться до бесконечности, но и попутно создавая участки пространства—времени, аналогичные тому, что мы видим вокруг себя. Детали этой модели пока что по большей части относятся к области гипотез и базируются на предположениях, далеко выходящих за пределы того, что текущий уровень прогресса позволяет надежно описать (мягко говоря). И все же, по моему мнению, намного более важную роль играет общая парадигма, согласно которой энтропия увеличивается просто потому, что она способна увеличиваться вечно; для Вселенной не предусмотрено состояния равновесия. Такая схема естественным образом приводит к градиенту энтропии; кроме того, она демонстрирует естественную симметрию времени относительно какого-то момента минимальной (хотя вовсе не обязательно «маленькой») энтропии. Было бы интересно исследовать, существуют ли другие способы реализовать эту общую программу.

Где-то на дальних подступах маячит один подход, который мы время от времени упоминали, но которому никогда не уделяли безраздельного внимания: идея о том, что «время» само по себе — это всего лишь приближение, периодически оказывающееся полезным (в том числе в нашей локальной Вселенной), но не несущее никакой фундаментальной значимости. Тем не менее такой вариант вполне допустим. Уроки, которые преподал нам голографический принцип, а также глобальное ощущение того, что базовые ингредиенты квантово-механической теории могут проявляться совсем иначе, не так, как мы привыкли видеть в классическом режиме, заставляют всерьез рассматривать возможность того, что время может быть стихийным явлением, а не неотъемлемой частью нашего окончательного описания мира.