Вечность. В поисках окончательной теории времени, стр. 102

Реальный мир

Давайте применим эти идеи к реальному миру. Если высокоэнтропийные состояния — это те, которые выглядят как пустое пространство, то, по всей видимости, наша фактическая наблюдаемая Вселенная должна эволюционировать по направлению к такому состоянию. (Так и есть.)

Не вдаваясь в подробности, мы сказали, что когда объекты коллапсируют под воздействием гравитации, они формируют черную дыру, которая некоторое время испаряется, прежде чем окончательно исчезнуть. Совершенно неочевидно, что так действительно происходит в реальном мире, где мы наблюдаем множество объектов, которые гравитация удерживает вместе, и эти объекты даже приближенно не напоминают черную дыру: планеты, звезды, даже галактики.

Однако реальность такова, что все эти системы в конце концов распадутся, — нужно лишь подождать достаточно долго. Наиболее очевидно это в случае галактик, которые можно рассматривать как наборы звезд, движущихся по орбитам под действием взаимного гравитационного притяжения. Каждая звезда проходит мимо множества других, и все они взаимодействуют подобно молекулам в контейнере с газом, за исключением того, что взаимодействие между ними — исключительно гравитационное (лишь в очень редких случаях одна звезда может непосредственно врезаться в другую). При таком взаимодействии звезды способны обмениваться энергией. [254] Поучаствовав в массе таких встреч, звезды иногда умудряются набрать так много энергии, что скорость их движения достигает скорости убегания, и они вылетают из своей галактики. В результате этого галактика теряет часть своей энергии и, как следствие, сжимается, подталкивая звезды ближе друг к другу. В конечном итоге оставшиеся звезды оказываются так тесно упакованными в своей галактике, что все они проваливаются в черную дыру в ее центре. Начиная с этого момента, мы возвращаемся к предыдущей истории.

Схожая логика распространяется и на любой другой объект во Вселенной, даже если в деталях возможны какие-то отличия. Главная мысль такова: любой камень, или любая звезда, или любая планета, или любое что угодно еще — любая физическая система — хочет оказаться в состоянии с высокоэнтропийной конфигурацией составляющих ее элементов. Это выглядит небольшим литературным преувеличением, ведь у неодушевленных предметов в действительности нет желаний, но данное описание отражает реальность: в ходе свободной, беспрепятственной эволюции система естественным образом приходит к конфигурации с наибольшей энтропией.

Возможно, вы думаете, что на самом-то деле эволюция ограничена: например, энтропия планеты могла бы быть намного выше, если бы вся ее масса сколлапсировала в черную дыру, но внутреннее давление удерживает ее в стабильном состоянии. Здесь в игру вступает чудо квантовой механики. Вспомните, что на самом деле планета — это не набор классических частиц; как и любой другой объект, она описывается волновой функцией. Эта волновая функция характеризует вероятность того, что мы найдем составляющие планеты в любой из возможных для них конфигураций. Одной из возможных конфигураций неизбежно будет черная дыра. Другими словами, у внешнего наблюдателя, смотрящего на планету (или на любой другой объект), всегда есть крохотный шанс увидеть спонтанный коллапс планеты в черную дыру. Этот процесс называется квантовым туннелированием.

Однако не стоит начинать беспокоиться раньше времени. Да, это правда. Практически у всего, что только можно найти во Вселенной, — Земли, Солнца, вас, вашей кошки — есть шанс в любой момент квантово протуннелировать в форму черной дыры. Но этот шанс чрезвычайно мал. Для того чтобы вероятность возросла настолько, чтобы к ней можно было относиться серьезно, должен пройти огромный промежуток времени — во много, много раз больше возраста Вселенной. Однако во Вселенной, которая живет вечно, это означает, что шансы однажды все-таки пронаблюдать такой результат довольно велики — более того, это неизбежно. Никакое скопление частиц не может существовать во Вселенной вечно, не меняя своего состояния. Вывод из всего этого таков: материя всегда найдет способ перейти в высокоэнтропийную конфигурацию, если таковая, в принципе, существует. Это может быть туннелирование в форму черной дыры или какие-то более приземленные варианты. Неважно, о каком комке материи во Вселенной идет речь; он может увеличить свою энтропию, испарившись в разреженный газ из частиц, уносящихся прочь в пустое пространство.

Энергия вакуума

Как мы обсуждали в главе 3, во Вселенной можно найти не только материю и излучение, там есть также темная энергия, ответственная за ускорение Вселенной. Мы не можем точно сказать, что такое темная энергия, но среди кандидатов на это звание в настоящее время лидирует «энергия вакуума», также известная под названием космологической постоянной. Энергия вакуума — это всего лишь постоянное значение энергии, присущей каждому кубическому сантиметру пространства, которое остается неизменным в пространстве и времени.

Существование темной энергии одновременно и упрощает наши идеи относительно высокоэнтропийных состояний в присутствии гравитации, и делает их более изощренными. Я говорил, что естественное поведение материи — рассеиваться по пустому пространству, которое, таким образом, становится наиболее вероятным кандидатом на звание состояния с максимальной энтропией. Во Вселенной, подобной нашей, где энергия вакуума мала, но все же больше нуля, этот вывод становится еще более здравым. Положительная энергия вакуума постоянно подталкивает расширение Вселенной, что поддерживает общую тенденцию материи и излучения к рассеиванию. Если в течение следующих нескольких лет человеческие существа сумеют создать машину или лекарство, обеспечивающие бессмертие, то космологам на протяжении своей бесконечной жизни придется наблюдать становящуюся все более пустой Вселенную. Звезды будут умирать, черные дыры испаряться, и все сущее будет разлетаться в стороны под воздействием ускорения, сообщаемого энергией вакуума.

В частности, если темная энергия — это действительно космологическая постоянная (а не что-то иное, что в конечном счете сойдет на нет), то мы можем быть уверены в том, что Вселенную никогда больше не ожидает Большое сжатие ни в какой форме. В конце концов, Вселенная не только расширяется, но и ускоряется, и это ускорение будет продолжаться вечно. Данный сценарий — и не будем забывать, что он остается наиболее популярным предсказанием эволюции реального мира среди современных космологов, — ярко иллюстрирует причудливую природу нашего низкоэнтропийного прошлого. Мы рассматриваем Вселенную, которая уже существовала какое-то фиксированное время в прошлом, но которую ждет бесконечное будущее. Первые несколько десятков миллиардов лет ее существования — это горячая, кипучая, сложная и интересная неразбериха, за которой последует бесконечный период холодной, пустой тишины. (За исключением редких статистических флуктуаций; см.следующий раздел.) Хотя это не более чем интуитивное ощущение, кажется излишним расточительством провести бесконечность в темном одиночестве после относительно волнующих и захватывающих ранних лет в прошлом нашей Вселенной.

Существование положительной космологической постоянной позволяет нам доказать хотя бы частично строгое утверждение, вместо того чтобы без конца развлекаться разнообразными мысленными экспериментами. Космическая теорема об отсутствии волос утверждает, что при традиционном наборе «разумных предположений» Вселенная с положительной энергией вакуума, включающая также несколько материальных полей, в конечном счете проэволюционирует в пустую Вселенную, не содержащую ничего, кроме энергии вакуума, — если, конечно, она просуществует достаточно долго для того, чтобы энергия вакуума одержала верх. Другими словами, космологическая постоянная всегда выигрывает. [255]