Машина-двигатель От водяного колеса до атомного двигателя, стр. 42

Однако, придя к такому выводу, ученые долгое время затруднялись объяснить, как же устроено ядро атома и почему между атомным весом и зарядом существует разница? Действительно, ядро атома водорода — «протон» — имеет единичный положительный заряд, и атомный вес тоже примерно равен единице. Следующий за ним в таблице элемент гелий (№ 2) имеет двойной заряд, но атомный вес его в четыре раза больше атомного веса водорода. Далее идет элемент литий (№ 3) — имеет заряд 3, а атомный вес 7, и т. д. Последний элемент таблицы — уран (№ 92) имеет заряд 92, а атомный вес 238.

В чем же дело? Ведь если ядра всех атомов составлены из разного количества ядер простейшего атома — водорода, то есть из протонов, то атомный вес гелия должен быть лишь вдвое больше атомного веса водорода, атомный вес лития — лишь втрое больше, а атомный вес урана — в 92 раза больше. Значит, ядра атомов состоят не из одних только протонов.

Одно время считали, что атомный вес указывает на количество протонов в ядре, а величина заряда ядра, как полагали, оказывается меньшей лишь только потому, что внутри ядра, кроме протонов, имеется еще некоторое количество «связанных» электронов. Эти ядерные электроны как бы нейтрализуют часть положительно заряженных протонов. А другая часть протонов, которая в сумме обладает зарядом, равным порядковому номеру в таблице Менделеева, связана уже не с ядерными электронами, а с внешними, которые движутся по оболочкам.

В 1932 году была экспериментально найдена еще одна частица, содержащаяся в ядре, — по весу она была равна весу протона, но никакого заряда не носила. В том же 1932 году советский ученый Иваненко высказал мысль о том, что ядро атома должно состоять не из протонов и электронов, а из протонов — положительно заряженных частиц — и совсем незаряженных частиц — нейтронов. Ученые смогли дальше усовершенствовать построенную ими модель атома. Стало понятным, что заряд ядра определяется числом протонов в ядре, а атомный вес — числом протонов и нейтронов вместе взятых.

Вот как теперь представляют себе атомы трех первых элементов таблицы Менделеева.

Водород — имеет ядро из одного протона, а по единственной оболочке вокруг ядра движется один электрон — очень легкая подвижная частичка, с массой в 1836 раз меньшей массы протона. Атомный вес определяется, по существу, только массой протона.

Гелий — имеет ядро, состоящее из двух протонов и двух нейтронов. Заряд — 2, атомный вес — 4. По двум внешним орбитам, составляющим оболочку одного диаметра, движутся два электрона.

Литий — имеет ядро из трех протонов и четырех нейтронов. Заряд — 3, атомный вес — 7. На орбитах — 3 электрона. Орбиты составляют две электронные оболочки: малую — с двумя электронами и большую — с одним.

Машина-двигатель<br />От водяного колеса до атомного двигателя - i_080.jpg

Схемы атомов водорода, гелия и лития.

Когда был найден нейтрон, стало ясно и что такое изотопы. Вот посмотрите на ядро лития: куча мала! Среди трех протонов тесно разместились 4 нейтрона. А ведь в сложных атомах, где 70, 80, 90 протонов, может разместиться много и нейтронов! Вот и получается, что, например, в свинце с атомным весом 206 на 82 протона приходится 124 нейтрона, а в свинце с атомным весом 208 на те же 82 протона приходится 126 нейтронов. В обоих случаях «куча мала» держится, и оба изотопа существуют, обладая одинаковыми химическими свойствами, так как химические свойства определяются количеством внешних электронов, а их количество определяется величиной заряда ядра, то есть числом протонов.

Могут быть, однако, и неустойчивые изотопы. Нейтрон сначала будто бы и прилепился, а вскоре его выбросило, — из одного изотопа получился другой изотоп.

Но что же, в таком случае, вообще связывает между собой нейтроны и протоны, почему положительно заряженные частички не отталкиваются друг от друга, а нейтральные почему не рассыпаются, как биллиардные шарики из пирамиды?

Вот тут-то как раз и начинается следующий этап разгадки тайн атома — этап, связанный с получением атомной энергии.

Чудесные превращения

Атом — очень маленькая частичка. А ядро атома по диаметру еще в сто тысяч раз меньше атома. Если бы ядро могло вырасти до размера булавочной головки, то атом оказался бы огромнейшим шаром с диаметром в 100 метров, а булавочная головка при той же степени увеличения выросла бы до размеров солнца! Иными словами — ядро атома во столько раз меньше булавочной головки, во сколько раз булавочная головка меньше солнца. Вот и представьте себе величину тех еще более мелких частиц, которые заключены внутри ядра атома. Там, как мы знаем, уживаются друг с другом протоны и нейтроны. Но какие силы их связывают? Электрическими силы эти быть не могут, — тогда положительно заряженные протоны друг от друга оттолкнулись бы. Значит, это силы не электрические, а еще более мощные, потому что им всё же удается удержать тесно прижатые одноименно заряженные протоны. Что за природа «ядерных сил», как их называют ученые, пока еще точно не выяснено, — это предмет многих исследований, которые проводят ученые наших дней. Некоторые свойства «ядерных сил» уже удалось определить. Известно, например, что в пределах объема ядра, где самое большое расстояние между частицами не превышает 0,0000000000013 сантиметра, силы эти очень велики. Но уже при малейшем увеличении этого расстояния они начинают быстро ослабляться. И, если расстояние между частицами станет в 2–3 раза больше первоначального, силы эти вовсе исчезнут.

Значит, внутри ядра действуют два рода сил, направленных друг против друга: ядерные силы стремятся связать частицы, электрические силы стремятся их оттолкнуть друг от друга. Чем меньше частиц в ядре, тем они ближе друг к другу, тем сильнее оказываются там ядерные связи. В больших атомах, где много протонов и нейтронов и между двумя частицами может оказаться относительно большое расстояние, там ядерные связи слабее.

Вот если бы удалось чем-либо расщепить ядро, раздвинуть еще немного частицы между собой, тогда действие ядерных сил и вовсе прекратилось бы, а под влиянием электрических сил отталкивания некоторые протоны, а вместе с ними и нейтроны, вылетели бы из ядра. И при этом летели бы они с огромнейшими скоростями.

Но если из ядра будет удален хотя бы один протон, то, следовательно, и заряд такого ядра, и вес его изменятся. А раз изменится заряд, то и химические свойства вещества станут другими. Или, иными словами, один элемент превратится в другой.

Ядра самых тяжелых элементов — урана, тория, радия — сами распадаются. Одни быстрее, другие медленнее. Излучение, которое открыл Беккерель у урана, а супруги Кюри — у радия, есть не что иное, как результат постепенного распада атомных ядер этих элементов. Распад этот идет медленно, но непрерывно и закономерно. Ученые установили, например, что если взять какое-то количество урана, то через четыре с половиной миллиарда лет половина этого количества распадется.

Для элемента радия время «полураспада», как говорят ученые о распаде половинного количества, равно 1590 лет, — ведь излучение радия происходит более интенсивно!

Миллиарды лет уже длится этот распад тяжелых элементов. Постепенно они превращаются в нераспадающиеся, устойчивые элементы — изотопы свинца. Открыв это явление, ученые сейчас получили возможность высчитать, сколько лет существует наша планета — Земля.

Раньше считалось, что огненно-жидкий земной шар охлаждался до теперешнего состояния не менее 40 миллионов лет, потом различными способами был найден другой минимальный срок — 30 миллионов лет. Но всё это было далеко не точно. Теперь ученые установили, что Земля значительно старше, — ей около пяти миллиардов лет.

В ядрах тяжелых элементов внутриядерные силы не очень велики, — потому и распадаются эти элементы. Но можно ли, есть ли действительно такие возможности, чтобы искусственно изменять заряд ядра любого элемента — выбивать оттуда или, наоборот, добавлять туда протоны?