Читайте без рекламы
ВСЕГО ЗА 50 Руб./месяц

Машина-двигатель От водяного колеса до атомного двигателя, стр. 41

Но что же это за лучи? Действительно ли это те же «икс-лучи», что открыл Рентген, или это лучи новые?

Открытие радия дало возможность ученым ответить на эти вопросы, — изучить природу и свойство новых лучей, так как теперь они излучались достаточно сильно. Вскоре было обнаружено любопытное свойство новых лучей. Если кусочек радия поместить в поле сильного электромагнита, то лучи, испускаемые радием, на фотопластинках оставляют три следа, как будто здесь три разных вида лучей. Первый пучок отклоняется немного влево, второй пучок направляется прямо, а третий пучок отходит резко вправо.

Машина-двигатель<br />От водяного колеса до атомного двигателя - i_079.jpg

Следы излучений кусочка радия, помещенного в поле сильного электромагнита.

Стало ясно, что те лучи, которые отклоняются, состоят из заряженных электричеством частиц. Сложными опытами удалось определить, что левый пучок лучей состоит из быстронесущихся положительно заряженных частичек с массой, почти равной массе атома газа гелия. Эти частички были названы «альфа-частицами» (альфа — α — первая буква греческого алфавита). Лучи, отклоняющиеся вправо, как оказалось, состоят из мельчайших частичек, несущих самый маленький отрицательный электрический заряд, — электронов. (Электроны к тому времени были уже известны ученым, их даже называли «атомом электричества».) Такие лучи были названы «бетта-лучами» (β—вторая буква греческого алфавита). Наконец, средние лучи, «гамма-лучи» (γ—третья буква греческого алфавита), были похожи на лучи Рентгена, как будто они излучались от разряда в виде электромагнитных волн.

Но не лучи Рентгена и не «гамма-лучи» теперь уже занимали ученых. Казалось удивительным другое: из вполне определенного химического элемента радия или урана вылетают какие-то частички, не похожие на атомы этих веществ. Но откуда же им взяться? Выходит, атомы сами могут делиться, выходит, что альфа- и бетта-частички — это какие-то осколки атомов! Атомы могут, оказывается, распадаться!

Опыты, о которых писал Чичерин, раздвинулись, и, действительно, атом оказался делящимся.

И вот, этот-то вывод ученых, идущий вразрез со старыми представлениями о том, что «атом» — неделимая мельчайшая частичка, и явился началом разгадки тайны атома.

Атом и его модели

Итак, атом делим. Но как представить себе его строение? Какие мелкие частички и сколько разновидностей их содержится в атоме? Наконец, в каком порядке они там расположены? На все эти вопросы еще не было убедительного ответа. Правда, на основании опытов, ученые стали предлагать различные модели атома, но ни одна из них не казалась достоверной.

Английский физик Томпсон считал, например, что атом состоит из одних электронов, которые как бы плавают в положительно заряженной материи. Что это за материя, которая своим положительным зарядом удерживает отрицательно заряженные электроны, ни сам Томпсон, ни другие ученые объяснить не могли. И совсем нельзя было увязать с моделью Томпсона факт излучения атомами радия и урана α-частиц — положительно заряженных атомов гелия.

Нужны были годы большого труда, кропотливых исследований, сложных вычислений, остроумных опытов, чтобы прийти к единому решению, которое не вступало бы в противоречие с известными уже фактами.

Было бы слишком долго рассказывать о том, как шаг за шагом разгадывалась загадка атома. Попробуем лишь бегло проследить за ходом научной мысли.

В начале текущего века английский физик Резерфорд, проделавший много исследований над радиоактивными излучениями, пришел к выводу, что в атоме должно существовать центральное плотное ядро. Это доказывалось специальными опытами. Далее, на примере простейших атомов — водорода и гелия, — удалось убедиться в том, что ядро несет на себе положительный заряд, удерживающий внутри атома и некоторое количество электронов. Так, у водорода ядро атома имеет положительный заряд, равный заряду электрона. Следовательно, в таком атоме возле ядра находился лишь один электрон. Ученые еще раньше называли атом водорода «протоном» (первичным), теперь под «протоном» стали понимать ядро атома водорода, заряженное положительным зарядом. Так и считалось вначале, что в состав атома водорода входят протон (ядро) и один электрон. А вот у гелия, например, заряд ядра вдвое больше, значит, в ядре этого газа содержится два протона. Следовательно, α-частицы есть не что иное, как вылетающие ядра гелия; по массе они почти равны массе атома гелия (ведь электроны обладают очень малой массой, и их отсутствие почти не отражается на величине атомного веса), а по заряду соответствуют двум протонам.

Итак, ученые пришли к выводу, что атом любого вещества имеет центральное ядро с положительным зарядом и несколько электронов, удерживаемых этим зарядом возле ядра. Вначале казалось, что эти электроны должны составлять «облачко» вокруг ядра, но потом, исследуя дальше свойства атома, ученые создали его модель, которая действительно, как и предполагал Чичерин, напоминает солнечную систему. Эта модель и теперь считается наиболее достоверной. Она, эта модель, возможно, и не совсем точно воспроизводит истинное строение атома, но известные пока факты могут быть объяснены на ее основе. По этой модели атом представляется в виде маленькой системы, в центре которой помещается положительно заряженное ядро, а вокруг ядра по эллиптическим орбитам, или, точнее, оболочкам, движутся отрицательно заряженные электроны. Оболочек может быть несколько, — некоторые из них меньшего диаметра, некоторые большего. Чем оболочка меньше по диаметру, тем прочнее держатся ее электроны возле ядра. Электроны, находящиеся на внешних оболочках, могут отлетать от ядра, могут одновременно принадлежать внешним оболочкам двух атомов, — так образуются молекулы.

Создав такую модель атома и научившись опытом находить величину электрического заряда ядер, ученые поняли, в чем истинный смысл периодического закона Менделеева. Оказалось, что если первый элемент периодической таблицы — водород — обладает ядром с зарядом, равным единице, то следующий, второй, элемент — гелий — имеет ядро с зарядом, равным двум зарядам протона, и т. д. Величина заряда ядра атома любого элемента точно соответствует его порядковому номеру в таблице Менделеева. Следовательно, не столько вес атома, сколько заряд его ядра определяет все свойства вещества. И тот факт, что сам Менделеев не все элементы расположил точно по возрастанию атомных весов, но зато точно по возрастанию величины заряда ядер, оказался поразительным. Великий ученый предчувствовал какие-то более глубокие закономерности, чем просто увеличение атомного веса. Так, например, элемент «теллур» с атомным весом 127,61 Менделеев поставил раньше элемента «иод», хотя атомный вес последнего был меньше— 126,92. По своим свойствам элементы должны были располагаться именно так. И действительно, как оказалось впоследствии, заряд ядра теллура на единицу меньше заряда ядра иода.

В знак признания гениального предвидения Менделеева, порядковый номер элемента в его таблице, а следовательно, величину заряда ядра, ученые теперь именуют «числом Менделеева».

Что же касается атомных весов, то вскоре ученые обнаружили, что один и тот же элемент может иметь несколько разновидностей, отличающихся по атомным весам, но по химическим свойствам абсолютно схожих. Например, известный металл свинец, помеченный в таблице Менделеева номером 82, если он добывается из урановой руды, имеет атомный вес примерно 206, из ториевой руды — примерно 208, а из всех других руд — 207,2. Этот последний вес был определен химиками давно, но он, в сущности, представляет собой среднее значение между урановым и ториевым свинцом. Это значит, что в обычном свинце перемешаны два рода атомов — с весом 206 и с весом 208. По химическим свойствам оба вида свинца совершенно одинаковы, — заряд ядра их атомов тоже одинаковый. Такие разновидности одного и того же элемента, отличающиеся лишь атомным весом, ученые назвали «изотопами». Следовательно, в одной клетке таблицы Менделеева может находиться несколько изотопов элемента. Стало быть, и это обстоятельство указывает на тот факт, что не атомный вес определяет свойства элемента, а заряд его ядра и количество электронов, находящихся на его орбитах.