Машина-двигатель От водяного колеса до атомного двигателя, стр. 34

И вот шестнадцатилетний парнишка с тяжелым физическим недостатком, один, без друзей и знакомых, оказывается среди шумных московских улиц. В университет поступить не удалось, и, сняв дешевый угол у бедной прачки, Константин начинает учиться самостоятельно. Строго распределив свое время, он с утра уезжает в библиотеку и лишь к вечеру ее покидает. По пути домой юноша заходит в магазин, где на свои скудные средства приобретает кое-какие материалы, препараты. Вечером он изготовляет различные приборы и сам проводит опыты по физике и химии.

Так проходит еще два года. Многое достигнуто, но хочется большего. Однако отец, опасаясь за здоровье сына, забирает его домой — в Рязань. Здесь в 1878 году, двадцати одного года от роду, Константин Циолковский сдает экзамен на звание учителя уездной школы.

Сначала его посылают учительствовать в город Боровск, под Москву. Там начинается научная работа молодого учителя. Он связывается с Петербургским физико-техническим обществом, где ряд его работ получает одобрение.

Однако наиболее интересные и важные работы молодой учитель физики развернул в Калуге, куда он был переведен в 1892 году.

Еще в 1883 году Константин Эдуардович Циолковский в одном из своих ранних сочинений, которое называлось «Свободное пространство», писал: «Положим, что дана была бочка, наполненная сильно сжатым газом. Если отвернуть один из ее кранов, то газ непрерывной струей устремится из бочки, причем упругость газа, отталкивающая его частицы в пространство, будет так же непрерывно отталкивать и бочку. Результатом этого будет непрерывное изменение движения бочки».

Так пришел к мысли об использовании реактивного принципа движения человек, который затем решил посвятить всю свою жизнь дальнейшей разработке этого принципа.

То, что говорил Циолковский о бочке, сильно напоминает идеи Третесского. О тепловом двигателе здесь еще также нет речи.

В 1896 году Циолковский прочитал небольшую брошюру инженера Федорова — «Новый способ воздухоплавания, исключающий воздух, как опорную среду». Автор описывал возможность использования ракетного принципа для полета снаряда в безвоздушном пространстве. Но в книжке не всё было ясно, она не имела большой ценности. Однако молодому учителю физики показалась заманчивой раскрывшаяся перспектива полета в межпланетное пространство с помощью ракеты. Он решил сам проверить все положения автора, всё рассчитать, доказать и, если надо, дополнить. Как потом говорил сам Циолковский, эта маловажная книга толкнула его на серьезные исследования.

В 1903 году вышла новая работа Циолковского — «Исследование мировых пространств реактивными приборами».

Здесь впервые были даны расчеты и научное обоснование межпланетного ракетоплавания. И, конечно, не бочка с газом, а ракетный тепловой двигатель должен был приводить в движение космический корабль.

Но порох, о котором говорил Кибальчич, всё же нельзя было сжигать в ракетном двигателе, если требовалось получить длительную работу такого двигателя.

Циолковский не мог рекомендовать порох как топливо, потому что порох обладал низкой теплотворной способностью, то есть один килограмм пороха при сгорании выделял мало тепла, и, следовательно, надо было бы слишком много такого топлива брать с собой в полет. Сгорание одного килограмма лучшего пороха дает только 800–900 больших калорий тепла.

Но у пороха зато есть и достоинство: при сгорании он не требует воздуха, порох сам — и горючее вещество и окислитель. А вот для другого топлива нужен воздух, или, точнее, кислород.

Циолковский предложил ракетный тепловой двигатель, который работал бы на жидком топливе — жидком водороде или бензине, керосине и так далее, а для окисления, чтобы поддерживать гонение, следовало брать с собой и кислород в жидком виде.

Ракета Циолковского похожа на каплю дождя. В носовой части корабля размещаются экипаж и приборы. Вся другая часть занята под топливохранилище. Половину этого хранилища занимает само топливо, а половину — жидкий кислород. Постепенно, порция за порцией, подаются топливо и кислород в камеру сгорания. Здесь поддерживается всё время горение, и нагретые до высокой температуры газы с огромной скоростью вылетают наружу, создавая силу реакции и заставляя ракетоплан тоже с большой скоростью нестись вперед.

Машина-двигатель<br />От водяного колеса до атомного двигателя - i_067.jpg

Схема устройства космического корабля с реактивным тепловым двигателем, предложенная Циолковским.

Жидкий водород, по подсчетам Циолковского, соединяясь с кислородом в 1 килограмм воды, выделяет 3 825 калорий. Следовательно, такого груза (жидкий водород + жидкий кислород) можно взять примерно в пять раз меньше, чем пороха.

Циолковский не только выдвинул идею реактивного двигателя на жидком топливе, но и предложил ряд очень важных конструктивных решений: он указал на способы подачи топлива в камеру сгорания, на способы охлаждения двигателя, на способы управления двигателем и ракетой, на способы спуска ракеты.

И мысли, высказанные замечательным ученым, были настолько правильными, что даже пятьдесят лет спустя, в реактивных двигателях наших дней, многие из этих мыслей нашли практическое воплощение.

Двигатель, сам себя съедающий

Для каких целей, где может найти себе применение реактивный двигатель?

В первых же своих работах Циолковский показал, что никакой другой двигатель не сможет осуществить давнишнюю мечту человечества — перенести человека с Земли на другую планету. Еще в средние века такая мысль будоражила ум человека. Французский поэт, литератор и физик Сирано де Бержерак (1619–1655) в своих фантастических сочинениях указывал несколько, по его мнению, возможных способов путешествия на Луну. И в числе прочих он предлагал использовать силу непрерывно действующих, взрывающихся по очереди пороховых ракет.

Однако и сам Сирано де Бержерак и многие другие после него полагали, что можно отправить межпланетный корабль и другими способами.

Помните, например, как Жюль Верн отправлял своих героев на Луну? Он делал это с помощью огромной пушки, которая с невероятной силой и скоростью выбрасывала снаряд в межпланетное пространство.

Циолковский подсчитал, что если бы даже удалось построить пушку со стволом в 300 метров высоты (то есть в три раза выше Исаакиевского собора в Ленинграде) и обеспечить такое кратковременное давление газов, которое могло бы выбросить снаряд за пределы атмосферы, то оказалось бы, что, при огромной скорости вылета снаряда и огромной силе толчка, ни один прибор бы не остался цел, не говоря о человеке. Да и безопасный спуск такого снаряда на землю тоже оказался бы невозможным.

С другой стороны, как показал далее Циолковский, ракетный снаряд лишен этих недостатков. Он может сравнительно плавно подняться; его скорость может регулироваться, постепенно увеличиваясь.

В ракете могут безопасно размещаться приборы и даже люди. Возможна и обратная надежная посадка ракеты на Землю.

Кроме того, — об этом мы уже знаем — ракета может пролететь большие расстояния и развить большие скорости, а на больших скоростях ракетный тепловой двигатель окажется особенно экономичным, — до 85 % выделяемого топливом тепла сможет быть использовано на полезную работу толкания снаряда.

Вспомним, что лучшие паровые турбины используют только 35 % выделяемого топливом тепла, а лучшие двигатели внутреннего сгорания — дизели — используют только 45 %.

…Много прошло времени — половина века — с тех пор, как вышла первая работа Константина Эдуардовича Циолковского о жидкостном реактивном двигателе. Еще больше — три века прошло со времени Сирано де Бержерака. Мечта человека о межпланетном полете сейчас уже становится реальностью. И нашей родине принадлежит заслуга активного научного участия в решении этой задачи. Академия наук СССР установила в 1954 году специальную премию за лучшие работы в области межпланетных сообщений. Президент Академии наук Несмеянов на сессии Всемирного Совета Мира 27 ноября 1953 года сказал: «Наука достигла такого состояния, когда реальна посылка стратоплана на Луну…»