Пилотируемые полеты на Луну, стр. 15

Таблица 7

Пилотируемые полеты на Луну - i_55.png

Таблица 8 [4]

Пилотируемые полеты на Луну - i_56.png
Пилотируемые полеты на Луну - i_57.png

Рис. 15.1 (а). Служебный отсек со служебной двигательной установкой.

Пилотируемые полеты на Луну - i_58.png

Рис. 15.1 (б). Схема топливной системы двигательной установки служебного отсека.

Для обеспечения надежной работы систем двигательных установок корабля Apollo применялось резервирование таких элементов, как регуляторы, обратные клапаны, расходные клапаны, расходомеры. Эта идея резервирования видна и в схеме работы ЖРД служебного отсека (ряс. 15.2), в которой имеются параллельные шаровые клапаны, резервированные усилители. Азот под высоким давлением сообщает энергию усилителям, и в каждой из двух систем усилителей достаточно азота для 35 запусков ЖРД.

Пилотируемые полеты на Луну - i_59.png

Рис. 15.2. Схема работы ЖРД служебного отсека

Тот же принцип резервирования применен в двигательных установках посадочной и взлетной ступеней лунного корабля, с некоторыми исключениями вследствие различных требований к этим трем двигательным установкам.

Топливные баки двигательной установки посадочной ступени наддуваются гелием, хранящимся в сверхкритическом состоянии (рис. 15.3). Теплообменники топливо-гелий и гелий-гелий подводят к гелию тепло, чтобы поддержать давление в гелиевом баке и поднять температуру расходуемого гелия, при которой он может быть испольтован более эффективно. Для хранения топлива используются 4 бака, попарно соединенные параллельно. Так же как в двигательной установке служебного отсека, применено резервирование деталей там, где это необходимо. Пироклапан с дублированным запалом изолирует гелиевый бак до тех пор, пока не начнет работать посадочная двигательная установка на орбите-ИСЛ. Пироклапаны, установленные за обратными клапанами, предохраняют систему наддува от испарившегося топлива до запуска ЖРД.

Пилотируемые полеты на Луну - i_60.png

Рис. 15.3. Схема топливной системы двигательной установки посадочной ступени лунного корабля.

После посадки на Луну топливные баки дренажируются с помощью пироклапанов и соленоидных клапанов, и давление в баках не растет из-за теплоотдачи от ЖРД. Дренажирование должно контролироваться, чтобы исключить опасность для экипажа.

Последовательно-параллельные шаровые клапаны посадочного ЖРД (рис. 15.4) подобны описанным клапанам ЖРД служебного отсека, но усилители получают энергию от давления топлива вместо давления азота. В топливной линии к усилителям поставлены параллельно 2 клапана, изолирующих усилители от проникновения топлива.

Пилотируемые полеты на Луну - i_61.png

Рис. 15.4. Схема ЖРД посадочной ступени лунного корабля.

На схеме показан инжектор переменного сечения для дросселирования тяги ЖРД.

Двигательная установка взлетной ступени (рис. 15.5) подобна двигательной установке служебного отсека. Гелий под высоким давлением хранится в двух баках. В системе используются соленоидные клапаны, последовательно-параллельные редукторы давления, обратные клапаны. Установлено только 2 топливных бака без расходомеров. Имеется датчик минимального уровня, сигнализирующий об остатке топлива на 10 сек.

Для изоляции гелиевых баков до начала работы ЖРД используются пироклапаны. Последовательно-параллельные электроклапаны ЖРД включаются и выключаются дублированными усилителями, получающими энергию от давления топлива.

В обеих системах (посадочной и взлетной) двигательных установок нет расходного клапана, но при холодной проливке подбираются диаметры отверстий шайб настройки, точно обеспечивающие расчетный состав смеси. [24, 27, 28.]

Пилотируемые полеты на Луну - i_62.png

Рис. 15.5. Схема топливной системы двигательной установки взлетной ступени лунного корабля.

1.6. Космические летные испытания двигательных установок корабля Apollo

После обширной программы наземных испытаний в Уайт-Сэндз, шт. Нью-Мексико, включавшей проверку работы двигательных установок на всех ожидаемых режимах работы, в барокамере на экспериментальном образце корабля Apollo, был начат этап космических летных испытаний. На этом этапе были решены следующие задачи: отработка двигательных установок в беспилотном полете (Apollo-5), отработка двигательных установок в пилотируемом полете по геоцентрической орбите (Apollo-9), отработка двигательных установок в пилотируемом полете по окололунной орбите (Apollo-10). Apollo-5 и Apollo-9 были оборудованы контрольно-измерительной аппаратурой, используемой только на этапе летных испытаний конструкции (аппаратура «ЛИ»), и аппаратурой с кодово-импульсной модуляцией (аппаратура «КИМ»), которая соответствовала штатному составу измерений и устанавливалась на все последующие летные экземпляры кораблей Apollo. Информация аппаратуры «КИМ» передавалась на Землю в реальном масштабе времени для того, чтобы контролировать характеристики космического аппарата в процессе полета. Телеметрическая информация с аппаратуры «ЛИ» для оценки систем была доступной после полета. Сочетание контрольно-измерительной аппаратуры «КИМ» и «ЛИ» на первых аппаратах обеспечило преемственность между летными и наземными испытаниями, а также оказалось полезным в отношении анализа полетных ненормальностей. На рис. 16.1 и 16.2 приведены схемы двигательных установок посадочной и взлетной ступеней Apollo с контрольными приборами.

Пилотируемые полеты на Луну - i_63.png

Рис. 16.1. Схема контрольно-измерительной аппаратуры двигательной установки посадочной ступени лунного корабля.

Apollo-10. Двигательная установка посадочной ступени.

Двигательная установка посадочной ступени лунного корабля дважды запускалась в полете Apollo-10. Первый запуск – переход на траекторию спуска, второй запуск – фазирование орбиты.

Работа двигательной установки посадочной ступени протекала следующим образом. Давление в баке со сверхкритическим гелием перед стартом возрастало со скоростью 0,539 ат/ч. Средний темп роста давления во время полета в условиях невесомости перед первым запуском составлял 0,414 ат/ч. Такое снижение скорости роста давления привело к более низкому давлению в бачке с гелием в момент повторного запуска двигателя по сравнению с ожидавшимся уровнем.

Пилотируемые полеты на Луну - i_64.png

Рис. 16.2. Схема контрольно-измерительной аппаратуры двигательной установки взлетной ступени лунного корабля.

Эффект растворимости гелия в компонентах топлива снижает давление в газовых подушках топливных баков. Растворимость гелия в окислителе приблизительно в 5 раз больше, чем в горючем, поэтому давление в баках окислителя снижается сильнее, чем в баках горючего. Давления наддува баков в полете были получены по датчикам на входе в двигатель (GQ3611P и GQ4111P). Величины давлений по этим датчикам в предстартовых условиях отличаются от давлений в газовых подушках топливных баков на величину гидростатического подпора компонентов. Этого гидростатического подпора нет при полете в условиях невесомости. 13 мая 1969 г. баки горючего были наддуты до 13,59 ата при 22,3°С. В день пуска, 18 мая, давление в баках понизилось до 13,22 ата при 22,8°С, что указывает на некоторое растворение гелия в течение 5 сут стоянки ракеты на пусковом столе. Первые полетные данные были получены во время проверки лунного корабля на 83-м ч полета; давление составило 10,77 ата при 21,2°С. Через 13 ч эти величины почти не изменились (10,70 ата при 21,0°C), что указывает на достижение состояния, близкого к полному насыщению.

вернуться

4

Fв/Fг = площадь выходного сечения сопла / площадь горла сопла.