Яды в нашей пище, стр. 23

Яды в нашей пище - i_028.png

Рис. 26. Повышение смертности в связи со смогом 5...9 декабря 1959 года в Лондоне. (Hodges, 1977.)

Путем направленного разведения устойчивых пород хвойных деревьев или замены хвойных пород лиственными можно смягчить симптомы, не затрагивая причин.

Относительно механизма действия SO2 на хвойные породы деревьев предложена теория, которая отводит главную роль закислению почвы при попадании в нее SO2 с кислотными дождями. В результате просачивания такой дождевой воды в лесную почву в минеральном грунте высвобождается связанный под гумусовым горизонтом алюминий. Образующиеся при этом токсичные ионы алюминия разрушают жизненно важную для питания дерева систему тонких корешков и открывают бактериям путь к корням и стволу. Они создают в комле дерева патогенное мокрое ядро, которое блокирует транспорт воды в верхние части дерева. Это «драматическое нарушение водного баланса» (Schutt) объясняет, почему ель отмирает снизу вверх и изнутри кнаружи (а не наоборот). А сразу после сильных морозов в задымленных еловых насаждениях гибнет необычно большое число деревьев.

В периоды засух и раньше наблюдались случаи закисления почвы, и тогда тоже высвобождались ионы алюминия. Однако раньше деревья могли вновь «отдохнуть» после засухи, чему сегодня препятствуют промышленные загрязнения. Закисляющему эффекту SO2 могло бы противодействовать известкование почвы, но во многих местах это мероприятие проводят слишком поздно.

В ФРГ в федеральной земле Северный Рейн-Вестфалия даже вдали от Рурской области лесам угрожает серьезная опасность. В результате двухлетних обстоятельных исследований было обнаружено, что в 58% еловых насаждений обрастание хвоей так резко отличается от нормы, что «следует считаться с реальной угрозой для лесов». В лиственных лесах по соседству с такими еловыми насаждениями отмирание лишайников на древесной коре сигнализирует и об опасности для дубов: на коре 57% обследованных дубов лишайники уже отсутствуют!

Так как именно хвойные насаждения столь чувствительны к SO2, Пауке и соавторы (Pauke et al.) предложили заменить их «экологически более стабильными буковыми насаждениями». Авторы, очевидно, сознают свое бессилие и намереваются бороться только с симптомами, но не с причинами, из породившими.

С начала 80-х годов было отмечено колоссальное усыхание лесов в Средней Европе (включая и лиственные насаждения) что вызвало острые дискуссии о его причинах (даже среди экспертов): с одной стороны, утверждали, что причиной гибели лесов будто бы является какой-то возбудитель болезни, о чем свидетельствуют эпидемиологические данные; с другой стороны, Шютт (Schutt) в своем выступлении по радио 12 февраля 1984 года в Западном Берлине решительно оспаривал мнение, что какой-то биотический компонент может быть единственной или основной причиной гибели лесов, — он утверждал, что скорее это еще не изученные компоненты воздушного загрязнения (возможно, тяжелые металлы?) во взаимодействии с другими вредными веществами (скорее всего сернистым газом).

В результате в ФРГ (1983) распространилось мнение о том, что, прежде чем принимать какие-либо меры, следует тщательно изучить причины гибели леса. Я считаю такой подход демагогическим и опасным. Если в Японии за последние 8 лет (до 1983 г.) удалось снизить загрязнение воздуха сернистым газом над островами при помощи специальных очистных установок с 1 500 000 до 80 000 тонн в год (т.е. почти на 95%), то это должно послужить стимулом и для Европы в ее борьбе с кислотными дождями! Это непременно скажется благотворным образом и на состоянии лесов. А между тем своим чередом должно идти тщательное исследование причин, выяснение того, какие еще факторы причастны к гибели лесов и что еще можно и нужно сделать, чтобы ей воспрепятствовать.

Античные сооружения Акрополя в Афинах за время 1960 по 1980 г. пострадали от загрязнения воздуха больше чем за два с половиной предыдущих тысячелетия. Причина этого в том, что SO2, выделяемый, например, цементным заводом в Пирее и муниципальными газовыми заводами, с дождями выпадает на землю в форме серной кислоты и превращает классический мрамор произведений искусства в крошащийся гипс. В настоящее время пытаются разработать защитную смесь для сооружений, которым угрожает воздействие серной кислоты.

На электростанциях ГДР для удаления сернистых соединений пробуют добавлять при сжигании каменного угля известняк из отвалов. В СССР работают с магнезитом, в Польше применяют аммиачный способ.

Наводивший ранее страх лондонский смог исчез, после того как в результате ряда строжайших мер снизилось содержание SO2 в бытовых и промышленных отработанных газах.

Для того чтобы оценить воздействие двуокиси серы, окислов азота и хлористого водорода на постройки, Цоллернский институт при Немецком музее горного дела провел следующую работу: вблизи исторических сооружений (возле замка Нейшванштейн, Кельнского и Любекского соборов и др.) на открытом воздухе выдерживали в течение года образцы природного камня. Оказалось, что в местах с сильным загрязнением воздуха SO2 (где в среднем за год осаждалось до 126 мг SO2 на 1 м2 в сутки) «на образцах появились заметные растрескивания и эрозии». За год пробы потеряли 3...4% своего веса.

В настоящее время в Швеции пробуют рассыпа?ть с самолетов известь над озерами, ставшими особенно кислыми, с целью смягчить последствия кислотных дождей. Благодаря установкам, улавливающим серу, в Японии удалось за 8 лет (до начала 80-х годов) снизить выброс серы с 1,5 млн до 0,08 млн тонн в год.

С 1978 года и в Альпах отмечается возрастающая гибель леса. В южной Швейцарии страдает прежде всего благородный каштан. В Австрии все больше разрушается покров альпийских высокогорных лугов, и это, вероятно, связано с влиянием «кислого снега» (там, где выпадают кислотные дожди, должен быть и кислый снег!); правда, здесь еще не проведен достаточно детальный анализ причин, как это имело место в Рудных горах.

После опытов, проведенных в теплицах (так называемом «экодроме») Института сельского хозяйства и экологии растений университета Хоэнхейм (Штутгарт, ФРГ), в последнее время стало ясно, что наряду с двуокисью серы причиной гибели леса является и озон. Основным источником повышенного содержания озона в нашем воздухе служат выхлопные газы: с ними в атмосферу поступают окислы азота, из которых под Действием солнечного света образуется озон. Согласно обобщению Службы охраны окружающей среды ФРГ, в 1984 г. в густонаселенных областях Средней Европы содержание озона в 1 м3 воздуха составляло 600 мкг, а во многих других местах 200 мкг — однако и это слишком много для чувствительных растений (не только для лиственниц и сосен, но и для ржи, ячменя, овса, картофеля, томатов и винограда).

37. Прочие аспекты загрязнения воздуха

В целом загрязнение воздуха составляет одну из самых неотложных проблем, связанных с отравлением нашей природной среды, так как воздействия вредных примесей являются здесь глобальными (как по вертикали, так и по горизонтали) и мы не можем их избежать. Поэтому данная проблема еще более серьезна, чем загрязнение питьевой воды — тут все-таки можно переключиться на минеральную воду.

Для ФРГ на 1970 г. приводятся следующие данные о годичном загрязнении воздуха: 7 тыс. тонн Pb, 7 млн тонн СО, 5 млн тонн SO2, 2,5 млн тонн копоти и пыли. Подобные отходы осаждаются также и на плодах и овощах как при их выращивании (особенно вблизи промышленных предприятий и автодорог), так и при раскладке на рынках или перед магазинами. Из указанных количеств загрязнителей половина имеет своим источником автомашины, а до четверти приходится на долю промышленности и домашнего хозяйства.

В земную атмосферу ежегодно поступает: 100 млн тонн соляной кислоты и других соединений хлора; 300 — 400 млн тонн сероводорода и серного ангидрида; 90 — 400 млн тонн окислов азота; от 80 до 200 млн тонн аммонийных соединений; кроме того, ежегодно высвобождается около 14 млн тонн двуокиси углерода.