По ту сторону кванта, стр. 14

Примерно так рассуждал Эйнштейн, когда предложил своё объяснение явления фотоэффекта. Он знал об открытии Планка, но для него, с его непредвзятой манерой мышления, гипотеза о квантах света не казалась столь ужасной, как самому Планку. Поэтому он был первый, кто не только поверил в неё, но и применил для объяснения новых опытов. Эйнштейн утверждал: свет не только испускается квантами, как того требовала гипотеза Планка, но и распространяется так же — квантами. Поэтому свет, падающий на поверхность металла, подобен не морским волнам, а артиллерийским снарядам. Причём каждый такой снаряд-квант может выбить из атома только один электрон.

Согласно Планку (вспомните первую главу), энергия снаряда-кванта равна h?. По мысли Эйнштейна, какая-то часть её, назовём её P, расходуется на то, чтобы вырвать электрон из атома, а остальная часть — на то, чтобы разогнать его до скорости v, то есть сообщить ему кинетическую энергию (mv2)/2. Оба эти утверждения можно коротко записать в виде простого уравнения:

h?=P+(mv2)/2

Стоит принять эту гипотезу — и явление фотоэффекта проясняется. Действительно, пока размеры снарядов малы (красный свет), они не могут выбить электрон из атома (h? < P), как бы много мы их ни посылали. Если же мы начнём увеличивать их размеры (фиолетовый свет), то в конце концов их энергия станет достаточной для выбивания электронов (h? > P). Но по-прежнему энергия «снарядов-квантов» будет зависеть только от их величины (то есть от их частоты ?), а не их числа.

Шестнадцать лет спустя глубокую простоту уравнения Эйнштейна Шведская академия наук отметила Нобелевской премией. Но в 1905 году, когда уравнение было написано впервые, на него нападали все, даже Планк. Он любил Эйнштейна и потому, убеждая прусское министерство просвещения пригласить его на работу в Берлин, просил «…не слишком сильно ставить ему в упрёк» гипотезу относительно явлений фотоэффекта.

Планка можно понять: только что вопреки общепринятым традициям и своему желанию он ввёл в физику квант действия h. Лишь постепенно приходило к нему сознание неизбежности этого шага. Даже в 1909 году он признавался Эйнштейну: «Я ещё плохо верю в реальность световых квант». Однако дело было сделано: «…Планк посадил в ухо физикам блоху», — говорил Эйнштейн двадцать лет спустя, и она не давала им покоя, хотя они и пытались её не замечать. Во всяком случае, Планк постарался ввести квант действия так, чтобы не пострадала волновая оптика — здание чрезвычайной красоты, созданное в течение двух столетий. Поэтому согласно Планку свет только испускается квантами, но распространяется по-прежнему как волна; только в этом случае удавалось сохранить все результаты волновой оптики.

А Эйнштейн поступал так, как будто до него вообще не существовало физики или, по крайней мере, как человек, ничего не знающий об истинной природе света. Здесь сказалась замечательная особенность Эйнштейна: в совершенстве владея логикой, он больше доверял интуиции и фактам. Для него не было случайных фактов в физике. Поэтому в явлениях фотоэффекта он видел не досадное исключение из правил волновой оптики, а сигнал природы о существовании ещё неизвестных, но глубоких законов.

Так уж случилось, что исторически сначала были изучены волновые свойства света. Только в явлениях фотоэффекта физики впервые столкнулись с его корпускулярными свойствами. У большинства из них инерция мышления была настолько велика, что они отказались этому верить. «Не может быть!» — повторяли они, подобно фермеру, увидевшему жирафа впервые в жизни.

Эйнштейн, конечно, знал историю оптики не хуже других. Но его независимый ум равнодушно относился к её солидному авторитету. Все прежние заслуги оптики для него не имели значения, если они не могли объяснить единственный, но бесспорный опыт. Он глубоко, почти религиозно, верил в единство природы, и для него один такой опыт значил не меньше, чем вся история оптики. А его честность не позволила ему пройти мимо неугодного факта.

В науке по-настоящему опасны только неверные опыты: опытам принято верить. Но любую гипотезу — какой бы привлекательной она ни казалась — всегда тщательно проверяют. Даже если она окажется ложной, опыты, которые её опровергли, часто приводят к результатам более ценным, чем сама гипотеза. Проверили и гипотезу Эйнштейна — она оказалась истинной.

В 1911 году Роберт Милликен, проверяя уравнение Эйнштейна, определил из него величину постоянной Планка h. Она совпала с тем значением, которое получил Планк из теории теплового излучения. А вскоре поставили опыт, идея которого в точности аналогична картине разрушения утёсов на берегу моря. И снова оказался прав Эйнштейн, а не признанный авторитет волновой оптики.

По ту сторону кванта - i_025.jpg
Роберт Милликен

Конечно, Эйнштейн не отрицал, что она всё-таки существует. И не оспаривал опытов, которые доказывали волновую природу света. Просто он довёл возникшее противоречие до логического конца и предоставил разрешать его следующему поколению физиков.

Несмотря на единодушные протесты, мысль о квантах света не погибла и восемь лет спустя дала могучие всходы. Это произошло в 1913 году, когда в лабораторию Резерфорда пришёл застенчивый и неторопливый датчанин Нильс Бор.

ОКОНЧАТЕЛЬНАЯ ПОБЕДА АТОМИСТИКИ

20 мая 1904 года в Манчестере, где провёл лучшие годы своей учёной деятельности Джон Дальтон, с торжественностью, к которой обязывают традиции англичан и значительность события, был отмечен столетний, юбилей атомной теории материи.

Победа её пришла не сразу: даже после работ Дальтона многие долгое время смотрели на атомистику просто как на «…любопытную гипотезу, допустимую с точки зрения нашей познавательной способности». Единодушие, с которым философы прошлого века отрицали существование атомов, пошатнуло веру в их реальность и у физиков. Например, философ и физик Эрнст Мах (1838–1916) прямо называл всех атомистов «общиной верующих». Его можно понять: человеку трудно вообразить себе нечто далее принципиально неделимое. И всё же в начале века идея об атоме победила окончательно: разум оказался способным понять даже то, чего он не в состоянии представить. И случилось это гораздо раньше, чем через 300 лет, как предсказывал Людвиг Больцман (1844–1906), трагически погибший в своём одиночестве, не понятый современниками.

Но победа эта всё-таки немного запоздала: после работ Томсона и Резерфорда понятие «атом» потеряло свой прежний смысл. Стало ясно, что атом — это не самая простая частица вещества, хотя его и нельзя расщепить средствами химии. «К сожалению, законы природы становятся вполне понятными только тогда, когда они уже не верны», — говорил Эйнштейн. Это не означает, конечно, что одновременно с этим законы теряют и всё своё значение. В истории атома независимо от дальнейших успехов науки — доказательство его реальности (даже в старом смысле ?????? — неделимый) навсегда останется одной из самых важных её побед.

Окончательное утверждение атомистики также связано с именем Эйнштейна: в том же 1905 году независимо от польского физика Мариана Смолуховского (1872–1917) он дал математическое описание брауновского движения. Его теорию подтвердил экспериментально Жан Перрен, который в 1909 году предпринял систематические и тщательные исследования брауновского движения. И до Перрена многие физики были убеждены, что истинная причина этих движений — толчки молекул жидкости, которые сами невидимы даже в лучший микроскоп. Но удивительные по изяществу опыты Перрена не просто доказали справедливость этих утверждений — из них следовало нечто большее: непонятное движение частиц в жидкости есть точная модель истинного движения невидимых молекул, увеличенная в несколько тысяч раз. Поэтому, изучая брауновское движение частиц, мы тем самым получаем наглядную картину движений невидимых молекул. (Точно так же, как знание свойств радиоволн даёт нам представление о волнах света и даже о рентгеновых лучах.)