В небе завтрашнего дня, стр. 44

20* Главным образом поэтому так велика стоимость новейших опытных военных самолетов; они обошлись бы, пожалуй, дешевле, если бы были изготовлены целиком из серебра или даже из золота!

21* Любопытно, что в абсолютном большинстве случаев эти столкновения не связаны с плохой погодой. Так, из 172 столкновений гражданских самолетов, происшедших в США за 1946–1952 годы, из-за плохой погоды произошло только… одно столкновение.

22* По журналу «Интеравиа», 19 декабря 1960 г.

В небе завтрашнего дня - pic_92.jpg
В небе завтрашнего дня - pic_93.jpg

Авиации необходим «противостолкновитель» (по журналу «Интеравиа», 1957 г.).

Трудность задачи заключается в том, что интенсивность движения на воздушных трассах быстро возрастает, растет также и скорость полета. Остается все меньше времени для того, чтобы установить опасное сближение и предотвратить столкновение. Очевидно, мало на самолете одного лишь автоматического «впередсмотрящего», нужны также «смотрящие» в стороны и даже назад — оттуда также может грозить появление в катастрофической близости опасного соседа. Эти дежурные «наблюдатели» должны отлично видеть не только днем и в ясную погоду, но и ночью, в тумане, при сплошной облачности 23*.

Чаще всего бывает, однако, недостаточно просигнализировать летчику о грозящей опасности, даже если можно точно указать, с какой стороны, каким курсом и с какой скоростью приближается грозящий столкновением самолет. При существующих уже сейчас скоростях летчику обычно не остается времени, чтобы совершить спасительный маневр или даже решить, какой именно маневр необходим. Тут нужен автомат, управляемый кибернетическим устройством. Электронный «мозг» быстрее человеческого учтет все обстоятельства и примет лучшее из возможных решение. Такие устройства — противостолкновители — разрабатываются и в будущем станут обязательными для каждого самолета.

Конечно, безопасность воздушного движения одним этим обеспечить не удастся. Придется разработать специальные правила, выполнение которых будет еще более обязательным, чем правил уличного движения. В особенности это относится к зонам с повышенной интенсивностью воздушного движения, в частности к районам крупных городов, воздух над которыми будет кишмя кишеть летательными аппаратами всех типов. Вероятно, придется еще более строго, чем теперь, разграничить зоны для различных летательных аппаратов — самолетов, вертолетов, реактолетов, для линейных самолетов, воздушных такси и т. д. Точно так же будут указаны строго определенные участки, где возможны переходы с одной высоты на другую, изменение курса или «стоянки». В воздухе будут дежурить милицейские вертолеты, снабженные несуществующими пока еще аппаратами регулирования воздушного движения.

Ночью на помощь им придут поляризованные, неслепящие лучи прожекторов, направляемые с земли, и сигнальные огни на тех же милицейских вертолетах. В туман и непогоду воздушное движение придется, вероятно, значительно ограничивать. По крайней мере, это коснется индивидуальных владельцев, с которыми и в воздухе будет больше всего мороки…

Не менее сложной является задача организации воздушного движения в крупных аэропортах. Даже сейчас это превращается в весьма нелегкое дело, если учесть, что иногда приходится принимать и отправлять по одному самолету каждые 2–3 минуты. В будущем же интенсивность воздушного движения станет неизмеримо большей. Как обеспечить четкий ритм работы аэропорта, безаварийную приемку и отправку самолетов по графику за минимальное время и в любых метеорологических условиях?

И здесь на помощь придут автоматические кибернетические устройства — без них, пожалуй, задача была бы неразрешимой. Ведь стоит лишь раз сбиться с графика, нарушить расписание, чтобы при большой интенсивности движения в воздухе над аэропортом началась такая сутолока, которая никогда добром не кончается. Да и пробыть в воздухе современные реактивные самолеты могут гораздо меньше: слишком много они расходуют топлива.

Все управление полетами в зоне аэропорта будет осуществляться электронным «мозгом». Эта вычислительная машина будет иметь внушительные размеры и занимать, по меньшей мере, все подвальное помещение просторного здания аэровокзала. Такие размеры машины не удивительны, ей придется выполнять очень сложную и разнообразную работу. Дежурные операторы службы движения на командном пункте будут лишь наблюдателями, вмешивающимися в деятельность «автоматического диспетчера» только в самых крайних случаях. Перед операторами будет огромная карта. На ней автоматически отразятся все изменения в жизни аэропорта и сведения о находящихся в его зоне летательных аппаратах. При нажатии на кнопку из динамика послышится голос «автоматического диспетчера», сообщающий необходимые данные о любом самолете — курс, высоту, скорость и пр. «Диспетчер» сообщит и принятое им решение. Так операторы смогут следить за деятельностью своего автоматического помощника.

Вся же основная работа выпадет на долю этого помощника. Как только какой-нибудь летательный аппарат появится в зоне, примыкающей к аэропорту, то есть приблизится к нему на несколько десятков километров, «автоматический диспетчер» установит за ним наблюдение с помощью радара и радиосвязи. От зорких радиолучей, а на более близких расстояниях и инфракрасных лучей ничто не скроется: для них и ночь и туман — как ясный день. Сигналы всех этих установок поступают в электронный «мозг», где с молниеносной быстротой производятся необходимые навигационные расчеты.

Ни одному штурману не снилась такая быстрота, и притом здесь не бывает ошибок, какие случаются даже у первоклассных специалистов. Машина принимает во внимание множество всяких сведений — тут и сила и направление ветра, и видимость, и типы самолетов, находящихся в воздухе, направление и скорость их полета, и все самолеты, находящиеся на земле, включая даже то, когда они совершили посадку. Учитываются и такие данные, как наличие больных на самолете или запас топлива, оставшегося в баках. И вот все учтено. Выработано решение, где, когда и как совершить посадку.

Теперь радиоволны несут кодированные команды на самолет. Управление переходит к автоматическим радиопилотажным устройствам, получающим эти команды «автоматического диспетчера». Точно и безукоризненно совершается посадка. Электронный «мозг» не только выполняет заданную программу действий, но и способен мгновенно принимать, в зависимости от сложившейся обстановки, ряд решений логического характера — это замечательное свойство кибернетических устройств. Любое, самое, казалось бы, незначительное происшествие, например внезапная поломка какого-нибудь агрегата на самолете, сейчас же учитывается электронным «мозгом». Он может отменить разрешение на посадку, задержать отправку самолетов, направить ждущие посадки машины на запасные аэродромы и т. д.

Уже не раз проводились опыты, когда с самого момента захода на посадку и до полной остановки самолета летчик не касался рукояток управления. В будущем это станет правилом и сделает посадку абсолютно надежной.

Широкое применение автоматики, кибернетики, радиоэлектроники, радиотехники, телемеханики приведет к появлению множества беспилотных летательных аппаратов различного назначения, позволит сделать совершенно безопасным авиационное сообщение завтрашнего дня.

23* Для улучшения видимости самолетов в непогоду иногда применяются обшивки, покрытые флюоресцирующей краской, — как светящиеся декорации в театре. Но и это не намного облегчает положение.

Часть третья. От авиации к астронавтике

Глава XVIII. Между авиацией и астронавтикой

В этой главе читатель ознакомится с не существующими пока летательными аппаратами «космической» авиации будущего — солнцелетами, кислородолетами, атомолетами — ив заключение совершит полет на Терру-Межпланетный научно-исследовательский институт и станцию отправления космических кораблей, — недвижно висящую над земным экватором.

вернуться