Рак можно победить! Ловушка для раковых клеток, стр. 6

Сейчас очень много работ посвящено поиску генов (онкогенов), определяющих онкологию. Правильнее утверждать, что все те гены, которые сегодня описаны, как определяющие онкопроцесс, не являются таковыми. Они всего лишь проявление вторичной перестройкой работы генома ядра. Они всего лишь отражение измененных внутрицитоплазматических гомеостатических констант и работы митохондрий.

Известен белок р53, который является супрессором [6] развития раковых опухолей, кодируемый у людей геном ТР53. Этот белок чрезвычайно важен для многоклеточных организмов. Он регулирует клеточный цикл и может служить антионкогеном, т. е. предотвращать развитие рака.

Механизмов антираковых функций р53 несколько. Он распознает повреждения хромосомной ДНК и может инициировать временную остановку деления клеток в так называемых точках регулирования клеточного цикла. Белок р53 также способен активировать гены белков, исправляющих повреждения ДНК (например, при перерождении клетки в раковую). За время паузы белки, восстанавливающие ДНК, получают необходимое для работы время. Если ДНК восстанавливает нормальную функцию, клетки снова начинают делиться, и их ракового перерождения не происходит. Если повреждение ДНК не поддается исправлению, белок р53 способен запустить процесс апоптоза – запрограммированной гибели клетки. Похожим образом белок р53 может реагировать и на другие клеточные стрессы.

Проводились исследования активности опухолевого супрессора р53 при действии различных стрессов. Один из видов клеточного стресса – нарушение работы дыхательной цепи митохондрий.

Что такое дыхательная цепь митохондрий?

В процессе преобразования энергии используются богатые энергией электроны, заключенные в питательных веществах. Перенос электронов идет последовательно через ряд сложных белковых комплексов (с номерами от 1 до 4), плавающих в митохондриальной мембране и образующих «дыхательную цепь». Продвигаясь по этой цепи, электроны последовательно переходят на все более низкие энергетические уровни и в конце концов соединяются с кислородом воздуха, которым мы дышим. При этом энергия, отдаваемая электронами, преобразуется в биологически полезные формы, в частности, в энергию аденозинтрифосфорной кислоты (АТФ).

Оказалось, что когда цепь переноса электронов перекрывали на уровне комплексов 1, 2 или 4, активность опухолевого супрессора р53 оставалась на исходном низком уровне. Однако при нарушении переноса электронов через комплекс 3 дыхательной цепи митохондрий происходила значительная активация белка р53.

Это означает, что сами по себе неполадки в работе дыхательной цепи не так важны для клетки, как остановка потока электронов через комплекс 3.

В последнем случае сигнал о несчастье достаточно быстро передается в клеточное ядро, уровень и активность р53 резко возрастают, в результате чего включается работа генов, ответственных за остановку клеточного цикла. Клетки перестают делиться, и через некоторое время в них включается механизм программируемой клеточной смерти – апоптоз.

Так как неполадки в работе дыхательной цепи происходят в митохондриях, а активированный р53 работает в другой части клетки, в ядре, должен существовать путь передачи сигнала от митохондрии в клеточное ядро. Провели поиск этого сигнального пути. Нельзя сказать, что нашли все его звенья, однако ключевое звено было выявлено. Оказалось, что за передачу сигнала ответственен фермент DHODH, который участвует в биосинтезе пиримидиновых нуклеотидов (мономерных блоков для синтеза новых молекул ДНК и РНК). Этот фермент расположен в итохондриальной мембране вблизи комплекса 3 дыхательной цепи. Остановка потока электронов через комплекс 3 ведет к нарушению работы этого фермента и, как следствие, остановке синтеза пиримидиновых нуклеотидов.

Синтез РНК и ДНК происходит в клеточном ядре, и нарушение каждого из этих процессов может приводить к активации р53. Показано, что недостаток мономерных блоков для образования новых молекул РНК и ДНК в делящейся клетке и является причиной активации р53. Так, добавление пиримидиновых нуклеотидов в среду для роста клеток выключало активацию р53 при ингибировании комплекса 3, и клетки выживали.

Впервые показано, что биосинтез пиримидиновых нуклеотидов является связующим звеном между дыхательной цепью митохондрий и опухолевым супрессором р53.

Преимущества предлагаемой нами аберрантной теории онкологии заключаются в том, что с ее помощью можно построить логичную последовательную модель онкопроцеса, в которую можно вписать и не укладывающиеся в предшествующие модели энергетические и анаболитно-катаболические нарушения на клеточном уровне. В частности, становится намного понятнее, почему гликолизный метаболизм опухоли в восемь раз сильнее, чем гликолиз здоровой работающей мышцы, и в сто раз сильнее, чем в покоящейся ткани. Весь онкогенный процесс начинается с изменения энергетических процессов.

Методика данного лечения основана на предложенной мною мембранно-митохондриальной теории рака. Дело в том, что подавление онкоклеток с помощью фокусированного катаболизма – это решение только части проблемы. С помощью же предлагаемого метода мы можем не только уменьшить объем опухоли, но и полностью избавиться от нее и метастазов.

Но и этого будет недостаточно. Так как первичные механизмы злокачественного перерождения клеток до конца не устранены, остается риск рецидива болезни. Только устраняя базу, на которой может возобновиться процесс, можно полностью избавиться от патологии. Для этого обязательным звеном лечения должно быть восстановление мембранно-митохондриального комплекса.

Как известно, митохондрии являются структурами, которые осуществляют синтез аденозинтрифосфорной кислоты (АТФ) – основной энергетической единицы всего царства живого. Обычно митохондрии представляют собой мелкие (длиной 1/2–3 мкм) внутриклеточные образования, располагающиеся в местах, где необходимо использование энергии для любых жизненных процессов. Длинные и разветвленные митохондрии могут энергетически обеспечивать отдаленные друг от друга участки клетки. Мембраны митохондрий способны проводить энергию.

Повышение общей эффективности и устойчивости ремиссионного процесса можно достичь с помощью применения льняного масла, содержащего омега-3 кислоту.

Глава 2. Новый взгляд на канцерогенез

Органические кислоты и митохондрии

Предлагаемая нами теория позволяет составить как пазлы единой картины многие факты, в том числе и факт положительного воздействия янтарной кислоты в энергетическом обмене. В предшествующих теориях все эти детали приходилось обходить стороной, так как они плохо сочетались друг с другом.

Янтарная кислота участвует в энергетическом обмене во всех тканях человека, способствует активации этого обмена – дает нам энергию, помогает приспособиться к отрицательному воздействию окружающей среды, когда клетки задыхаются от недостатка кислорода (гипоксии), повышает устойчивость организма к кислородному голоданию. Действие янтарной кислоты наиболее выражено в неблагоприятных, экстремальных условиях. Препарат способствует уменьшению в крови кетоновых тел, глюкозы, снижает гидроперекисное самоокисление и интоксикацию в клетках, улучшает работу пораженных митохондрий.

В обычной последовательности реакций в митохондриях – в цикле Кребса – янтарная кислота является одним из промежуточных соединений. Как показали исследования Института теоретической и экспериментальной биофизики РАН, энергетическая мощность процесса синтеза АТФ при окислении янтарной кислоты существенно выше, чем при окислении любого другого субстрата.

Онкологические клетки имеют аномалию в работе митохондрий, что обусловливает их анаэробный тип гликолиза. Все это предопределяет целесообразность применения такого типа оксигенаторов с целью перевода анаэробных онкологических клеток на более высокие уровни аэробности. Навязывание онкоклеткам перехода с анаэробного на аэробный уровень ослабляет их агрессивность (чрезмерно быстрый рост) и злокачественность. Опухоль становится менее опасной.

вернуться

6

Ген супрессор опухоли (антионкоген) – ген, способный предотвращать размножение клеток. Если мутация происходит в этом гене, то человек может стать более восприимчивым к развитию злокачественной опухоли той ткани, в которой произошла эта мутация. – Примеч. ред.