Самые знаменитые головоломки мира, стр. 27

На рисунке вы видите эпизод одной из жарких битв, в которой участвовали крестоносцы. Случилось так, что после захвата турецкой крепости «они сбросили сарацин с укреплений и на виду у противостоящих армий сменили знамена на стенах».

Не иначе в этой истории содержится намек на то, что есть простой способ превратить знамя «неверных» в знамя крестоносцев. Допустим, что изображенный здесь турецкий флаг состоит из сшитых вместе темного и белого полотнищ. В темном материале вырезаны две дыры в форме звезды и полумесяца. Разрежьте темное полотнище на минимальное число частей, которые удалось бы расположить таким образом, чтобы получился белый крест, похожий на тот, что изображен на щите рыцаря.

168

Капуста миссис Виг
Самые знаменитые головоломки мира - pic_125.png

Миссис Виг сказала милой Мэри, что в этом году она засадила капустой большее квадратное поле, чем в прошлом, поэтому и выросло у нее на 211 кочанов больше. Многие ли из наших математиков и агрономов сумеют определить, сколько кочанов капусты вырастила миссис Виг в этом году?

169

Расположите цифры и точки таким образом, чтобы сумма равнялась 100

Когда в Филадельфии праздновалось столетие независимости, я предложил маленькую арифметическую головоломку, которая вызвала заметную дискуссию. Требовалось расположить 10 цифр и 4 точки таким образом, чтобы в сумме получилось ровно 100. [Запрещается использование каких-либо других математических символов, однако точки можно использовать как для отделения дробной части в десятичном представлении числа, [16]так и для указания на период десятичной дроби. (Например, запись 1 указывает на число 0,1111…, которое равно, разумеется, 1/9.) – М. Г.]

170

Сколько каштанов получила каждая девочка?
Самые знаменитые головоломки мира - pic_126.png

Собрав 770 каштанов, три маленькие девочки разделили их пропорционально своему возрасту. Всякий раз, как Мэри брала 4 каштана, Нелли брала 3, а на каждые 6 каштанов, полученных Мэри, Сузи досталось 7. Сколько каштанов получила каждая девочка?

171

Угадайте высоту столба
Самые знаменитые головоломки мира - pic_127.png

На этой моментальной фотографии, сделанной некогда в Кони-Айленд, мальчик пытается взобраться на верхушку скользкого столба, чтобы получить приз в 10 долларов. Зная, что ширина трамвайного пути равна 4 футам 8 дюймам, не смогут ли наши любители головоломок достаточно точно оценить высоту столба?

172

От Инвернесс до Глазго

Отправляясь из Инвернесс в Глазго, расстояние между которыми составляет 189 миль, я должен был сделать выбор: либо долго петлять по живописной железной дороге, либо трястись на старом громоздком дилижансе. Я выбрал последнее, ибо в этом случае путешествие длилось на 12 часов меньше. И вот тут-то мне и пришла на ум одна из самых интересных, на мой взгляд, головоломок о путешествиях.

Мой дилижанс отправился из Инвернесс в то самое время, когда поезд вышел из Глазго. Когда по пути мы встретились, то наше расстояние от Инвернесс превосходило наше расстояние от Глазго на число миль, в точности равное числу часов, прошедших с начала путешествия.

Как далеко мы были от Глазго в момент встречи с поездом?

173

Каким образом выиграть?
Самые знаменитые головоломки мира - pic_128.png

Летом 1865 года, путешествуя с группой туристов по швейцарским Альпам, от Альтдорфа до Флулена, мы повстречали крестьянскую девочку, собиравшую маргаритки. Желая развлечь ребенка, я показал ей, как можно узнать ее будущее, отрывая лепестки цветка, дабы выяснить, чьей невестой она станет: «богача, бедняка, нищего или вора». Она сказала, что эта игра хорошо известна местным девушкам с той лишь разницей, что здесь в нее играют двое. Каждый игрок может оторвать по желанию либо один, либо два соседних лепестка. Игра продолжается до тех пор, пока победитель не сорвет последний лепесток, оставляя тем самым своего партнера, называемого «старой девой», в проигрыше.

К нашему изумлению, маленькая Гретхен, которой не было и десяти лет, обыграла подряд всю нашу компанию независимо от того, кто начинал игру. Я не мог понять, в чем здесь дело, до самого возвращения в Люцерн, но компания так на меня насела, что мне пришлось исследовать эту игру всерьез.

Кстати замечу, что несколько лет спустя мне довелось вернуться в Альтдорф и я посетил место моего бесславного поражения. Мне было бы приятно, если бы я смог придать этой истории большую романтичность, сказав, что я нашел маленькую Гретхен, превратившуюся к этому времени в прекрасную fraulein с феноменальными математическими способностями. И все же я видел ее, ибо все женское население как раз собралось в тот момент на посевную. Все женщины выглядели старше своих лет и походили друг на друга как две капли воды. И мне показалось, что я узнал мою прежнюю приятельницу, запряженную вместе с коровой в плуг, за которым шел ее благородный супруг.

Игра представлена на рисунке в виде маргаритки с тринадцатью лепестками. В нее можно играть двум игрокам, которые по очереди делают на лепестках небольшие отметки. При каждом ходе можно помечать либо один лепесток, либо два смежных. Тот, кто отметит последний лепесток, оставит прозвище «старой девы» для своего партнера.

Может ли кто-нибудь из наших любителей головоломок сказать, кто должен выигрывать в этой игре, первый или второй игрок, и какой системе он должен следовать, чтобы добиться выигрыша?

174

Сколько весит кирпич?
Самые знаменитые головоломки мира - pic_129.png

Если целый кирпич уравновешивается 3/ 4кирпича и 3/ 4фунта, то сколько он весит?

175

Передвиньте 4 корабля, чтобы получилось 5 рядов по 4 корабля в каждом
Самые знаменитые головоломки мира - pic_130.png

На рисунке показано 10 боевых кораблей, расположенных в два ряда. При подходе неприятеля 4 корабля меняют свои позиции так, чтобы образовалось 5 рядов по 4 корабля в каждом. Как это происходит? Решая головоломку, можно воспользоваться 10 монетами.

176

Разрежьте две доски на части, чтобы составить один круг
Самые знаменитые головоломки мира - pic_131.png

Почти каждый сборник головоломок содержит некую задачу о столяре, который захотел сделать из круглой крышки стола две овальные крышки для табуреток с прорезями в центре, как показано на рисунке. Головоломку требуется выполнить с наименьшим числом частей.

Обычно в ответе содержится 8 частей. Круг разрезается, как показано на рис. 1, а затем составляются две крышки для табуреток, как показано на рис. 2.

Пользуясь методом, в котором участвует китайская монада (символ Инь-Ян), [17]эту задачу можно решить, разрезав круглую крышку всего на 6 частей. Задача представлена здесь в обратной форме. Разрежьте каждую овальную крышку на 3 части так, чтобы из полученных 6 частей образовать круглую крышку стола без дыр.

вернуться

16

В англоязычных странах вместо привычной нам десятичной запятой используется десятичная точка. – Прим. перев.

вернуться

17

Она изображена на рисунке к задаче 178. – Прим. перев.