Ткань космоса. Пространство, время и текстура реальности, стр. 88

В типе сверхновых Ia белый карлик — звезда, которая исчерпала запас ядерного топлива, но имеет недостаточную массу, чтобы самой по себе стать сверхновой, — всасывает вещество с поверхности находящейся рядом звезды-компаньона. Когда масса белого карлика достигает критической величины, составляющей около 1,4 массы Солнца, в нём лавинообразно развивается ядерная реакция, которая заставляет его стать сверхновой звездой. Поскольку такие взрывы сверхновых происходят, когда карликовая звезда достигает одной и той же критической массы, характеристики взрыва, включая его абсолютную светимость, практически одинаковы от случая к случаю. Более того, поскольку сверхновые, в отличие от 100-ваттных лампочек, чрезвычайно мощны, они не только имеют стандартную надёжную светимость, но их также можно ясно видеть через Вселенную. Так что они являются первыми кандидатами на роль стандартной свечи. {145}

В 1990-е гг. две группы астрономов, одна под руководством Сола Перлмуттера в Лоуренсовской национальной лаборатории в Беркли и другая под руководством Брайана Шмидта в Австралийском национальном университете, взялись за определение параметра замедления — и, следовательно, полной материи/энергии — Вселенной путём измерения скоростей удаления сверхновых типа Ia. Определение того, что сверхновая принадлежит к типу Ia, довольно просто, поскольку излучение, генерируемое при её взрыве, имеет весьма характерный рисунок: сначала крутой рост, а затем пологое падение интенсивности. Но на самом деле поймать сверхновую типа Ia на месте преступления является немалым подвигом, поскольку такие взрывы в типичной галактике происходят только раз в несколько сотен лет. Тем не менее благодаря инновационной технологии одновременного наблюдения тысяч галактик через телескопы с широким полем обзора команды смогли обнаружить около четырёх дюжин сверхновых типа Ia на различных расстояниях от Земли. После скрупулёзного определения расстояния и скорости удаления каждой сверхновой обе группы пришли к совершенно неожиданному заключению: начиная с времени, когда Вселенной было около 7 млрд лет, темп её расширения нетормозился. Наоборот, темп расширения возрастал.

Группы пришли к заключению, что первые 7 млрд лет после первичного взрыва расширение Вселенной замедлялось, примерно как тормозит автомобиль, когда приближается к контрольному посту ГАИ. Это и ожидалось. Но результаты измерений показали, что подобно водителю, который нажимает на педаль газа после прохождения контрольного поста, расширение Вселенной с тех пор ускоряется. Темп расширения пространства через 7 млрд лет после Взрыва был меньше, чем темп расширения через 8 млрд лет после Взрыва, который в свою очередь был меньше, чем темп расширения через 9 млрд лет после Взрыва, и т. д. — все они были меньше, чем темп расширения сегодня. Ожидаемое торможение расширения пространства переключилось на неожиданное ускорение.

Но как такое может быть? Ответ обеспечивает то самое второе независимое подтверждающее мнение относительно пропавших 70% материи/энергии, которые разыскивали физики.

Пропавшие 70%

Если вы мысленно перенесётесь в 1917 г., когда Эйнштейн ввёл космологическую постоянную, у вас будет достаточно информации, чтобы выдвинуть предположение о том, почему Вселенная ускоряется. Обычные материя и энергия вызывают обычную притягивающую гравитацию, которая замедляет расширение пространства. Но по мере того как Вселенная расширяется и разные объекты всё более отдаляются друг от друга, это космическое гравитационное притяжение, хотя и продолжает замедлять расширение, становится слабее. И это приводит нас к новому и неожиданному повороту. Если бы Вселенная имела космологическую постоянную — и если бы её значение имело точно нужную, маленькую величину, — то на протяжении примерно 7 млрд лет с Большого взрыва её гравитационное отталкивание перекрывалось бы гравитационным притяжением обычной материи, приводя к общему замедлению расширения, в соответствии с результатами наблюдений. Но затем, когда обычная материя рассеялась в пространстве и её гравитационное притяжение ослабло, отталкивающее воздействие космологической постоянной (величина которого не изменяется, по мере того как материя рассеивается) должно было постепенно взять верх, и эра замедленного расширения пространства должна была смениться эрой ускоренного расширения.

В конце 1990-х гг. такие рассуждения и углублённый анализ экспериментальных данных привели обе группы, Перлмуттера и Шмидта, к мысли, что Эйнштейн не ошибся восемьдесят лет назад, когда ввёл космологическую постоянную в уравнения гравитации. Вселенная, как предположили обе группы, на самом делеимеет космологическую постоянную. {146} Она имеет не ту величину, которую предлагал Эйнштейн, поскольку он искал возможность существования статической Вселенной, где гравитационное притяжение и отталкивание точно уравновешивались бы, но эти исследователи обнаружили, что уже миллиарды лет отталкивание доминирует. Но несмотря на эти детали и на то, что открытие групп Перлмуттера и Шмидта должно тщательно изучаться и должны быть доведены до конца необходимые исследования, нельзя не удивляться предвидению Эйнштейна, которое подтверждается спустя 80 лет.

Скорость убегания сверхновых зависит от разницы между гравитационным притяжением обычной материи и гравитационным отталкиванием «тёмной энергии», которую даёт космологическая постоянная. Допуская, что количество материи, как видимой, так и тёмной, составляет около 30% от критической плотности, исследователи сверхновых пришли к заключению, что ускоренное расширение, которое они наблюдали, требует отталкивающего эффекта космологической постоянной, тёмная энергия которой составляет около 70% от критической плотности.

Это поразительное число.Если оно верно, тогда не только обычная материя — протоны, нейтроны, электроны — составляют жалкие 5% от материи/энергии Вселенной, и не только некоторая, на сегодня неидентифицированная тёмная материя составляет по меньшей мере в пять разбольшее количество, но также бо?льшую частьматерии/энергии во Вселенной составляет совершенно отличающаяся и ещё более таинственная тёмная энергия, которая распределена по всему пространству. Если эти идеи верны, они самым невероятным образом углубляют революционный переворот в мировоззрении человечества, произведённый Коперником: мы не только не являемся центром Вселенной, но даже материя, из которой мы состоим, подобна обломкам, плавающим в космическом океане. Если бы протоны, нейтроны и электроны не были включены в замысел великого творения, полная материя/энергия Вселенной почти не уменьшилась бы.

Но имеется вторая, равно важная причина, почему 70% является удивительным числом. Космологическая постоянная, которая даёт 70% в критической плотности, будет вместе с 30%, приходящимися на обычную материю и тёмную материю, давать полную материю/энергию Вселенной, точно равную всем 100%, предсказываемым инфляционной космологией! Так что отталкивание, продемонстрированное результатами изучения сверхновых, может быть объяснено в точности тем количеством тёмной энергии, которое необходимо для объяснения невидимых 70% Вселенной, о которых чесали затылки инфляционные космологи. Измерения сверхновых и инфляционная космология изумительно дополняют друг друга. Они друг друга подтверждают. Каждое даёт подтверждающее второе независимое мнение для другого. {147}

Объединяя наблюдательные результаты по сверхновым с теоретическими представлениями инфляции, мы, таким образом, получаем набросок космической эволюции, который представлен на рис. 10.6. Сначала энергия Вселенной была заключена в поле инфлатона, которое находилось вне своего состояния минимальной энергии. Вследствие своего отрицательного давления поле инфлатона вызвало гигантский взрыв инфляционного расширения. Затем, примерно через 10 ?35с, когда поле инфлатона соскользнуло на дно своей чаши потенциальной энергии, взрыв расширения подошёл к концу и инфлатон высвободил свою энергию, отдав её на производство обычной материи и излучения. Много миллиардов лет эти привычные составляющие Вселенной создавали обычное притягивающее гравитационное действие, которое замедляло расширение пространства. Но когда Вселенная выросла и стала более разреженной, гравитационное притяжение уменьшилось. Около 7 млрд лет назад обычное гравитационное притяжение стало настолько слабым, что гравитационное отталкивание космологической постоянной стало доминировать, и с тех пор темп расширения пространства постоянно растёт.

вернуться
вернуться
вернуться