Таємниця двох океанів, стр. 18

І Марат накинувся на свій захололий суп.

Розділ VII

ПІДВОДНИЙ ЧОВЕН «ПІОНЕР»

В таких запальних розмовах з Маратом і в тихих, але не менше жвавих та цікавих розмовах з іншими спеціалістами підводного човна Павлик дізнався в загальних рисах про все, що становило головну особливість цього незвичайного корабля.

«Піонер» вільно володів морськими просторами, міг опускатися на будь-які глибини, не боячись бути роздавленим кілометровими товщами води, міг перетинати океани вздовж і впоперек, не заходячи в порти і бази, не почуваючи в них потреби, його єдиною базою був безмежний Світовий океан з усіма його невичерпними запасами енергії і їжі.

Корпус «Піонера» був збудований з нового сплава, лише недавно винайденого радянськими металургами. Як відомо, сплави, тобто суміші з різних металів, набувають часто нових, зовсім несподіваних властивостей. Наприклад, алюміній — дуже легкий і м'який метал. Але якщо його сплавити з мізерними кількостями міді, марганцю і магнію, то одержаний сплав (дуралюмін) набуває твердості сталі, зберігаючи при цьому легкість алюмінію. Завдяки саме цим якостям — легкості і твердості — дуралюмін широко застосовується в будівництві літаків і дирижаблів.

У складний рецепт нового сплава радянські металурги ввели кілька рідкісних елементів у зовсім нових комбінаціях і кількостях. Одержаний сплав виявився настільки легким, міцним і, найголовніше, таким дешевим, а конструкція корпусу підводного човна — настільки дотепною і вдалою, що «Піонер» дістав здатність витримувати тиск понад тисячу атмосфер. І не тоді, як найкращі сучасні підводні човни через ненадійність матеріалу і недосконалість конструкції могли занурюватися не глибше як на двісті-триста метрів, витримуючи при цьому тиск лише в двадцять-тридцять атмосфер.

Ще чудовішим виявився застосований Крєпіним спосіб добування з океану електричної енергії з допомогою термоелементів, а також способи нагромадження і використання цієї енергії для руху і озброєння підводного човна.

Струм із термоелектричних трос-батарей надходив в акумулятори. Але це не були ті громіздкі, важкі, малоємкі акумулятори, якими доводилось користуватися звичайним підводним човнам і які здатні були нагромаджувати в собі електричну енергію не більше ніж на двадцять-тридцять годин підводного плавання. Три батареї з нових акумуляторів — маленьких, легких, що мали величезну ємкість, — повністю заряджені, забезпечували «Піонерові» освітлення, опалення, рухову силу і ще деякі технічні потреби для безперервного п'ятнадцятиденного переходу в підводному стані. Лише після цього строку в акумуляторних батареях використовувався весь запас електричної енергії, і вони потребували нової зарядки. Для цього підводний човен повинен був зупинятися і пускати в хід свої трос-батареї.

Ці акумулятори були блискучим досягненням відомого Московського інституту фізичних проблем, який давно вже заслужив світову славу своїми працями в галузі низьких температур, що наближаються до абсолютного нуля ( — 273°С). Однією з найважливіших проблем, над якими працював інститут, було явище електричної надпровідності при низьких температурах, відкрите ще в 1911 році голландським ученим Камерлінг-Оннесом.

Явище надпровідності полягає в тому, що багато металів, сплавів і хімічних сполук металів при певній для кожного з них температурі поблизу абсолютного нуля раптом втрачають здатність опору електричному струмові, який пропускають через них. Струм проходить в них, не гублячи у вигляді тепла частини своєї енергії, яка звичайно витрачається на переборення опору провідника. Завдяки цьому в замкнутому кільці з свинцевого, наприклад, дроту, розташованому в рідкому гелії, температура якого дорівнює мінус 271,9° С, електричний струм зберігається протягом кількох діб.

Інститутові фізичних проблем після тривалих і наполегливих шукань пощастило знайти такий сплав металу, який при температурі, віддаленій від абсолютного нуля лише двома сотнями градусів, перетворювався в надпровідник з надзвичайно великою енергоємкістю і тривалим часом релаксації, тобто часом збереження струму після припинення дії електрорушійної сили.

Інститут, за пропозицією урядових органів, створив для підводного човна Крєпіна крихітні легкі акумулятори, які могли нагромаджувати величезні запаси електроенергії, довго зберігати їх і в міру потреби віддавати.

Однак над усе вражала величезна, нечувана швидкість, яку «Піонер» здатний був розвивати під водою. Тоді як сучасні підводні човни звичайного типу в підводному плаванні не могли досягати швидкості більшої за двадцять вузлів, «Піонер» легко робив по вісімдесят вузлів, тобто стільки, скільки робили найшвидші надводні катери — торпедоносці і «мисливці» за підводними човнами.

Як же Крєпіну пощастило добитися такої нечуваної швидкості при величезному опорі, який чинить вода кораблеві, особливо при підводному плаванні?

Відомо, що найкращі підводні плавці — риби, кити і головоногі. Протягом сотень мільйонів років мільйонами поколінь в безперервній боротьбі за існування вони пристосувалися до водяного середовища. Перемагали, виживали і лишали потомство лише ті, які були краще озброєні і швидше рухалися в своїй рідній стихії. Внаслідок цього їхні тіла набули форм, які найкраще забезпечують швидкість руху при найменшій затраті сил. Це — форма торпеди і форма висячої краплини рідини з опуклістю попереду і потоншенням до заднього кінця. Обидві ці форми мають найбільший діаметр у першій третині своєї передньої частини. Незважаючи на це, вже давно було доведено, що саме вони чинять найменший опір оточуючому середовищу — воді або повітрю — під час руху. Струмені води чи повітря плавно обтікають такі форми і так само плавно зливаються позаду, не утворюючи там засмоктуючих вихорів.

Інженер Крєпін відмовився від звичайної гостроносої форми корпусу підводного човна і надав своєму «Піонерові» форми кашалота, оскільки з розрахунків конструктора виходило, що, незважаючи на величезні розміри і вагу, кашалот витрачає на рух кожного квадратного метра своєї поверхні менше сил, ніж будь-який інший житель вод.

Далі, всім уже давно відоме велике значення слизу, що вкриває тіло майже всіх водних організмів, особливо таких, які не сидять на місці, а швидко рухаються. І, справді, слиз дуже зменшує тертя і опір води під час руху. Крєпіна захопила думка збільшити швидкість руху «Піонера», вкривши його корпус чим-небудь подібним до слизу. Проте, коли б і пощастило вкрити поверхню «Піонера» штучним слизом, він однаково безперервно змивався б водою. Після тривалих шукань Крєпін знайшов зовсім несподіваний вихід, У тих випадках, коли необхідно було досягти особливо великих швидкостей, він оточував корпус «Піонера» замість слизу шаром гарячої пари. Користуючись своїми невичерпними запасами електроенергії, «Піонер» з її допомогою нагрівав увесь зовнішній корпус підводного човна до температури в дві тисячі градусів. При такій температурі невеликий шар оточуючої води миттю перетворювався на пару. Внаслідок швидкого руху підводного човна все нові й нові шари води стикалися з його розжареною поверхнею, безперервно створюючи навколо нього суцільну газоподібну оболонку. Завдяки цьому усувалось тертя води і виникало тертя в газоподібному середовищі, щільність якого, правда, була більшою, ніж щільність атмосферного повітря, але в багато разів меншою за щільність води. Пара, яка утворювалась навколо підводного човна, як тільки він віддалявся від попереднього місця, зараз же охолоджувалась під впливом навколишньої низької температури і перетворювалася знову на воду; бульбашки не досягали поверхні.

Нарешті, інженер Крєпін вирішив відмовитися від гвинтів. Тільки ракета, за твердим переконанням Крєпіна, могла дати можливість використати повною мірою і величезну потужність електростанцій човна і колосальну міцність та жаротривкість металу, з якого збудований був «Піонер». Здавалося б, у такому щільному середовищі, як вода, найменше можна було чекати появи природних реактивних двигунів. Тимчасом давно вже відомо, що деякі водні організми, такі, наприклад, чудові плаЕці, як головоногі, чудово користуються цим способом руху, втягуючи воду в свої воронки спереду по руху і потім сильним стисненням викидаючи її звідти назад.