Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории), стр. 35

Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_32.jpg
Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - pic_33.jpg

Математический аппарат квантовой механики показывает, что чем выше энергетический барьер, тем меньше вероятность того, что такой созидательный микроскопический переучет произойдет. Однако если говорить о микроскопических частицах, находящихся перед бетонной плитой, они имеют возможность занять достаточное количество энергии и иногда делают то, что с точки зрения классической физики является невозможным: они мгновенно проходят через область, для проникновения в которую у них раньше не хватало энергии. При переходе к более сложным объектам, состоящим из большего числа частиц, возможность квантового туннелирования сохраняется, но становится очень маловероятной, поскольку требует, чтобы все частицы совершили переход одновременно. Однако шокирующие эпизоды, подобные исчезновению сигары Джорджа, перемещению кубика льда сквозь стенку бокала и проход Джорджа и Грейс сквозь стенку бара, могут происходить. В фантастическом месте, подобном Н-бару, в котором значения велики, квантовое туннелирование является обычным делом. Однако квантовой механикой правят законы вероятности. В частности, малость значения в реальном мире означает, что если вы будете каждую секунду атаковать бетонную стену, вам придется потратить время, превышающее возраст Вселенной, прежде чем у вас появится сколько-нибудь заметный шанс пройти сквозь стену в одной из попыток. Однако, имея бесконечное терпение (и такую же продолжительность жизни), рано или поздно вы можете оказаться с другой стороны.

Соотношение неопределенностей является сердцевиной квантовой механики.

Свойства, которые кажутся нам обычно столь фундаментальными, что не вызывают никаких сомнений, — что объекты имеют определенное положение и скорость, и что в определенные моменты времени они имеют определенную энергию, — теперь представляются всего лишь следствием того, что постоянная Планка так мала в масштабах нашего повседневного мира. Первостепенное значение имеет то, что применение этих квантовых принципов к структуре пространства-времени демонстрирует фатальное несовершенство «основ гравитации» и приводит нас к третьему и наиболее серьезному противоречию, с которым столкнулись физики в течение последнего столетия.

Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика

За последнее столетие наше понимание физического мира чрезвычайно углубилось. Теоретический аппарат квантовой механики и общей теории относительности позволил понять и предсказать доступные экспериментальной проверке физические явления, происходящие как на масштабах атомного и субатомного мира, так и на масштабах галактик, скоплений галактик и самой Вселенной в целом. Это фундаментальное достижение. Поистине вдохновляет то, что существа, обитающие на одной из планет, обращающейся вокруг заурядной звезды на окраине ничем не примечательной галактики, сумели путем размышлений и эксперимента выяснить и постичь ряд самых загадочных свойств физического мира. Тем не менее физики так устроены, что они никогда не будут удовлетворены до тех пор, пока не почувствуют, что достигли глубочайшего и наиболее фундаментального понимания Вселенной. Это то, что Стивен Хокинг назвал первым шагом к познанию «замысла Бога»1).

Существует много свидетельств того, что квантовая механика и общая теория относительности не позволяют достичь этого глубочайшего уровня понимания. Поскольку их обычные области применения столь сильно различаются, в большинстве случаев требуется использование либо квантовой механики, либо общей теории относительности, но не обеих теорий одновременно. Но в некоторых экстремальных условиях, когда тела очень массивны и одновременно чрезвычайно малы по размерам (например, вещество вблизи центра черных дыр или Вселенная в целом в момент Большого взрыва), для полного понимания требуется как общая теория относительности, так и квантовая механика. Однако, подобно встрече огня и дороха, попытка объединения квантовой механики и общей теории относительности приводит к разрушительной катастрофе. При объединении уравнений этих теорий правильно поставленные физические задачи дают бессмысленные ответы. Бессмыслица часто принимает форму прогноза, что квантово-механическая вероятность некоторых процессов равна не 20, 73 или 91 %, а бесконечности. Но что же может означать вероятность, превышающая единицу, не говоря уже о бесконечности? Мы вынуждены заключить, что здесь есть какой-то серьезный порок. Внимательно анализируя основные понятия общей теории относительности и квантовой механики, можно выяснить, что же это за порок.

Суть квантовой механики

Когда Гейзенберг открыл соотношение неопределенностей, в физике произошел резкий поворот, и назад пути нет. Вероятности, волновые функции, интерференция и кванты — все это требует радикально новых способов видения мира. Однако не исключено, что какой-нибудь твердолобый физик-«классик» продолжает держаться за тонкую нить надежды, что когда все уляжется, эти отклонения от «классики» удастся встроить в систему понятий, не слишком сильно отличающуюся от прежних представлений. Однако соотношение неопределенностей ясно и недвусмысленно отрицает любую возможность возврата к прошлому.

Соотношение неопределенностей утверждает, что при переходе к меньшим расстояниям и меньшим промежуткам времени жизнь Вселенной становится все более неистовой. Мы столкнулись с некоторыми свидетельствами этого при описании в предыдущей главе попыток точного определения положения элементарных частиц, таких как электроны. Освещая электроны светом все возрастающей частоты, мы измеряем их положение со все большей точностью, но за это приходится платить тем, что сами измерения вносят все большие возмущения. Высокочастотные фотоны обладают большой энергией и, следовательно, дают электронам резкий «толчок», значительно изменяющий их скорости. Подобно беспорядку в комнате, полной детей, мгновенное положение которых вам известно с большой точностью, но скорость которых, точнее, величину скорости и направление перемещения, вы почти не можете контролировать, эта неспособность определить одновременно положение и скорость элементарных частиц свидетельствует об изначальной хаотичности микромира.

Хотя этот пример выражает фундаментальную связь между неопределенностью и хаосом, на самом деле он раскрывает только часть обшей картины. Например, можно было бы думать, что неопределенность возникает только тогда, когда мы — бестактные наблюдатели — вмешиваемся в происходящее на сцене мироздания. Это не верно. Пример попытки удержать электрон в небольшой коробке и его бурная реакция на это — увеличение скорости и хаотичности движения — подводит нас немного ближе к истине. Даже без «прямых столкновений» с вносящими возмущение «экспериментаторскими» фотонами скорость электрона резко и непредсказуемо изменяется от одного момента времени к другому. Но и этот пример не раскрывает все ошеломляющие свойства микромира, следующие из открытия Гейзенберга. Даже в самой спокойной ситуации, которую только можно себе представить, например, в пустой области пространства, согласно соотношению неопределенностей в микромире имеет место невероятная активность. И эта активность возрастает по мере уменьшения масштабов расстояния и времени.

В понимании этого ключевую роль играет принцип квантово-механического баланса. Мы видели в предыдущей главе, что точно так же, как вы можете занять денег, чтобы решить важные финансовые проблемы, частица (например, электрон) может временно занять энергию, чтобы преодолеть реальный физический барьер. Это так. Но квантовая механика заставляет нас углубить эту аналогию. Представьте себе маниакального заемщика, который ходит от одного приятеля к другому, прося денег взаймы. Чем короче период времени, на который приятель может дать ему деньги, тем большую сумму он просит. Занимает и отдает, занимает и отдает — снова и снова он берет деньги в долг только для того, чтобы вскоре вернуть их. Как цены на акции в те дни, когда биржа ведет себя подобно американским горкам, количество денег, которые есть у маниакального заемщика в любой заданный момент времени, испытывает чрезвычайно сильные колебания, но по завершении всех этих операций его финансовый баланс находится в том же состоянии, в котором он был в начале.